中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Dynamic Feature Learning for Partial Face Recognition

文献类型:会议论文

作者He LX(何凌霄); Li HQ(李海青); Zhang Q(张琪); Sun ZN(孙哲南)
出版日期2018
会议日期6.18-6.21
会议地点美国盐湖城
英文摘要

Partial face recognition (PFR) in the unconstrained environment is a very important task, especially in video surveillance, mobile devices, etc. However, a few studies have tackled how to recognize an arbitrary patch of a face image. This study combines Fully Convolutional Network (FCN) with Sparse Representation Classification (SRC) to propose
a novel partial face recognition approach, called Dynamic Feature Matching (DFM), to address partial face images regardless of sizes. Based on DFM, we propose a sliding loss to optimize FCN by reducing the intra-variation between a face patch and face images of a subject, which further improves the performance of DFM. The proposed DFM is
evaluated on several partial face databases, including LFW, YTF and CASIA-NIR-Distance databases. Experimental results demonstrate the effectiveness and advantages of DFM in comparison with state-of-the-art PFR methods.

语种英语
源URL[http://ir.ia.ac.cn/handle/173211/23699]  
专题自动化研究所_智能感知与计算研究中心
作者单位中科院自动化研究所
推荐引用方式
GB/T 7714
He LX,Li HQ,Zhang Q,et al. Dynamic Feature Learning for Partial Face Recognition[C]. 见:. 美国盐湖城. 6.18-6.21.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。