Training Binary Weight Networks via Semi-Binary Decomposition
文献类型:会议论文
作者 | Hu, Qinghao1,2![]() ![]() ![]() ![]() ![]() |
出版日期 | 2018-09 |
会议日期 | 2018-9 |
会议地点 | 德国慕尼黑 |
英文摘要 | Recently binary weight networks have attracted lots of attentions due to their high computational efficiency and small parameter size. Yet they still suffer from large accuracy drops because of their limited representation capacity. |
源URL | [http://ir.ia.ac.cn/handle/173211/23705] ![]() |
专题 | 自动化研究所_模式识别国家重点实验室_图像与视频分析团队 |
通讯作者 | Cheng, Jian |
作者单位 | 1.Institute of Automation, Chinese Academy of Sciences, Beijing, China 2.University of Chinese Academy of Sciences, Beijing, China 3.Center for Excellence in Brain Science and Intelligence Technology, Beijing, China |
推荐引用方式 GB/T 7714 | Hu, Qinghao,Li, Gang,Wang, Peisong,et al. Training Binary Weight Networks via Semi-Binary Decomposition[C]. 见:. 德国慕尼黑. 2018-9. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。