表面缺陷视觉快速检测技术研究
文献类型:学位论文
作者 | 黄亦斌![]() |
答辩日期 | 2019 |
文献子类 | 博士 |
授予单位 | 中国科学院自动化研究所 |
授予地点 | 中国科学院自动化研究所 |
导师 | 原魁 |
关键词 | 视觉表面缺陷检测, 显著性检测,卷积神经网络, 线结构光,三维配准 |
学位专业 | 控制理论与控制工程 |
英文摘要 | 产品的表面质量是其商品价值和使用价值的重要保障,也与企业的利益和信誉息息相关。基于机器视觉的表面缺陷检测技术能在高速生产线上剔除不合格产品,在保证产品质量的同时节省大量的人力成本。所以,视觉表面缺陷检测技术有着重要的研究意义和很高的实用价值,也是智能制造技术的重要组成部分。本文针对视觉缺陷检测中尚未得到解决的若干关键技术问题展开研究,在考虑缺陷检测算法准确性的同时也充分考虑了高速生产线对实时性的要求。本文的主要工作如下: (1) 研究显著性检测模型在缺陷检测领域的应用。提出了一个使用增强、互补或削弱等策略,融合图像多个线索的缺陷显著性检测模型。与传统的显著性检测模型相比,该方法具有更强的特征描述能力,可以检测出复杂多变的缺陷。针对磁瓦缺陷检测问题,改进 U-Net 卷积神经网络检测缺陷。在磁瓦缺陷检测任务中,该深度学习模型优于传统缺陷检测模型。
(3) 针对大幅面、高分辨率图像的微小缺陷检测问题,设计了一种多任务型卷积神经网络。利用快速下采样层,使网络在保留更多的图像细节的同时,有效地减少网络对显存的占用;采用多任务监督策略,使得缺陷二分类和多分类的性能都得以提升;使用常规增广、随机掩模和条件 Inpaint 等数据增广方法,解决了高分辨图像样本不均衡和数据不足等问题。本章还分析了不同类型的损失函数对网络性能的影响,在高分辨率的布匹缺陷数据集上验证了本文提出的多任务型卷积神经网络的有效性。与其它多种相关方法相比,在有限的硬件资源下,本章所提出的方法获得了最高的准确率,且算法的运算速度达到了实时检测高分辨率图像的需求。 本文的最后还简单总结了本文的工作成果,并讨论了在本文的研究基础上可以进一步开展的研究工作。 |
语种 | 中文 |
页码 | 130 |
源URL | [http://ir.ia.ac.cn/handle/173211/23815] ![]() |
专题 | 自动化研究所_智能制造技术与系统研究中心 自动化研究所_智能制造技术与系统研究中心_智能机器人团队 |
推荐引用方式 GB/T 7714 | 黄亦斌. 表面缺陷视觉快速检测技术研究[D]. 中国科学院自动化研究所. 中国科学院自动化研究所. 2019. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。