Gourmet Photography Dataset for Aesthetic Assessment of Food Images
文献类型:会议论文
作者 | Kekai, Sheng1,2![]() ![]() ![]() ![]() |
出版日期 | 2018-12 |
会议日期 | 2018-12-4 2018-12-7 |
会议地点 | Tokyo, Japan |
英文摘要 | In this study, we present the Gourmet Photography Dataset (GPD), which is the first large-scale dataset for aesthetic assessment of food photographs. We collect 12,000 food images together with human-annotated labels (i.e., aesthetically positive or negative) to build this dataset. We evaluate the performance of several popular machine learning algorithms for aesthetic assessment of food images to verify the effectiveness and importance of our GPD dataset. Experimental results show that deep convolutional neural networks trained on GPD can achieve comparable performance with human experts in this task, even on unseen food photographs. Our experiments also provide insights to support further study and applications related to visual analysis of food images. |
语种 | 英语 |
源URL | [http://ir.ia.ac.cn/handle/173211/23890] ![]() |
专题 | 自动化研究所_模式识别国家重点实验室_多媒体计算与图形学团队 自动化研究所_模式识别国家重点实验室_模式分析与学习团队 |
作者单位 | 1.NLPR, Institute of Automation, Chinese Academy of Sciences 2.University of Chinese Academy of Sciences 3.Megvii/Face++ Research 4.Snap Inc. |
推荐引用方式 GB/T 7714 | Kekai, Sheng,Weiming, Dong,Haibin, Huang,et al. Gourmet Photography Dataset for Aesthetic Assessment of Food Images[C]. 见:. Tokyo, Japan. 2018-12-4 2018-12-7. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。