中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Attention-based Multi-patch Aggregation for Image Aesthetic Assessment

文献类型:会议论文

作者Kekai, Sheng1,2; Weiming, Dong1; Chongyang, Ma3; Xing, Mei3; Feiyue, Huang4; Bao-Gang, Hu1
出版日期2018-10
会议日期2018-10-22 2018-10-26
会议地点Seoul, Republic of Korea
关键词Image Aesthetic Assessment Attention Mechanism Deep Learning
英文摘要

Aggregation structures with explicit information, such as image attributes and scene semantics, are effective and popular for intelligent systems for assessing aesthetics of visual data. However, useful information may not be available due to the high cost of manual annotation and expert design. In this paper, we present a novel multi-patch (MP) aggregation method for image aesthetic assessment. Different from state-of-the-art methods, which augment an MP aggregation network with various visual attributes, we train the model in an end-to-end manner with aesthetic labels only (i.e., aesthetically positive or negative). We achieve the goal by resorting to an attention-based mechanism that adaptively adjusts the weight of each patch during the training process to improve learning efficiency. In addition, we propose a set of objectives with three typical attention mechanisms (i.e., average, minimum, and adaptive) and evaluate their effectiveness on the Aesthetic Visual Analysis (AVA) benchmark. Numerical results show that our approach outperforms existing methods by a large margin. We further verify the effectiveness of the proposed attention-based objectives via ablation studies and shed light on the design of aesthetic assessment systems.

语种英语
源URL[http://ir.ia.ac.cn/handle/173211/23891]  
专题自动化研究所_模式识别国家重点实验室_多媒体计算与图形学团队
通讯作者Weiming, Dong
作者单位1.NLPR, Institute of Automation, Chinese Academy of Sciences
2.University of Chinese Academy of Sciences
3.Snap Inc.
4.Tencent
推荐引用方式
GB/T 7714
Kekai, Sheng,Weiming, Dong,Chongyang, Ma,et al. Attention-based Multi-patch Aggregation for Image Aesthetic Assessment[C]. 见:. Seoul, Republic of Korea. 2018-10-22 2018-10-26.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。