Rotaion and Scale-invariant Object Detector for High Resolution Optical Remote Sensing Images
文献类型:会议论文
作者 | Huang H(黄河)1,2![]() ![]() ![]() |
出版日期 | 2019-04-05 |
会议日期 | 2019年7月29日-2019年8月2日 |
会议地点 | 日本横滨 |
关键词 | Rotation-invariant Scale-invariant Convolutional Neural Network Optical Remote Sensing Object Detection |
英文摘要 | Object detection of high-resolution optical remote sensing images is challenging due to two fundamental problems. One is the huge scale variation of objects in images, e.g., small vehicle and cross-sea bridge. The other one is the objects could take on arbitrary orientations because of the high angle shot. In this paper, we propose a Rotation and Scale-invariant Detector (RS-Det) for remote sensing images to solve the above problem in an unified network. Specifically, RS-Det consists of a deformable convolution module to learn spatial transformation (such as rotation, transition, etc) and a feature pyramid architecture for multi-scale feature representation. These two modules enable a better feature learning of convolutional neural network and boost the performance by 3.6% compared with the baseline method. In DOTA, a large-scale |
语种 | 英语 |
源URL | [http://ir.ia.ac.cn/handle/173211/23934] ![]() |
专题 | 自动化研究所_模式识别国家重点实验室_遥感图像处理团队 |
通讯作者 | Huang H(黄河) |
作者单位 | 1.中科院自动化所模式识别国家重点实验室 2.中国科学院大学 3.北京联合大学机器人学院 |
推荐引用方式 GB/T 7714 | Huang H,Huo CL,Wei FL,et al. Rotaion and Scale-invariant Object Detector for High Resolution Optical Remote Sensing Images[C]. 见:. 日本横滨. 2019年7月29日-2019年8月2日. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。