中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Rotaion and Scale-invariant Object Detector for High Resolution Optical Remote Sensing Images

文献类型:会议论文

作者Huang H(黄河)1,2; Huo CL(霍春雷)1; Wei FL(魏飞龙)3; Pan CH(潘春洪)1
出版日期2019-04-05
会议日期2019年7月29日-2019年8月2日
会议地点日本横滨
关键词Rotation-invariant Scale-invariant Convolutional Neural Network Optical Remote Sensing Object Detection
英文摘要

Object detection of high-resolution optical remote sensing images is challenging due to two fundamental problems. One is the huge scale variation of objects in images, e.g., small vehicle and cross-sea bridge. The other one is the objects could take on arbitrary orientations because of the high angle shot. In this paper, we propose a Rotation and Scale-invariant Detector (RS-Det) for remote sensing images to solve the above problem in an unified network. Specifically, RS-Det consists of a deformable convolution module to learn spatial transformation (such as rotation, transition, etc) and a feature pyramid architecture for multi-scale feature representation. These two modules enable a better feature learning of convolutional neural network and boost the performance by 3.6% compared with the baseline method. In DOTA, a large-scale
dataset for aerial image object detection, our RS-Det achieves the state-of-the-art accuracy, which verifies our method’s superiority.

语种英语
源URL[http://ir.ia.ac.cn/handle/173211/23934]  
专题自动化研究所_模式识别国家重点实验室_遥感图像处理团队
通讯作者Huang H(黄河)
作者单位1.中科院自动化所模式识别国家重点实验室
2.中国科学院大学
3.北京联合大学机器人学院
推荐引用方式
GB/T 7714
Huang H,Huo CL,Wei FL,et al. Rotaion and Scale-invariant Object Detector for High Resolution Optical Remote Sensing Images[C]. 见:. 日本横滨. 2019年7月29日-2019年8月2日.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。