Re-KISSME: A robust resampling scheme for distance metric learning in the presence of label noise
文献类型:期刊论文
作者 | Zeng, Fanxia1,3![]() ![]() ![]() ![]() |
刊名 | NEUROCOMPUTING
![]() |
出版日期 | 2019-02-22 |
卷号 | 330页码:138-150 |
关键词 | Resampling scheme KISSME Distance metric learning Label noise |
ISSN号 | 0925-2312 |
DOI | 10.1016/j.neucom.2018.11.009 |
通讯作者 | Zhang, Wensheng(wensheng.zhang@ia.ac.cn) |
英文摘要 | Distance metric learning aims to learn a metric with the similarity of samples. However, the increasing scalability and complexity of dataset or complex application brings about inevitable label noise, which frustrates the distance metric learning. In this paper, we propose a resampling scheme robust to label noise, Re-KISSME, based on Keep It Simple and Straightforward Metric (KISSME) learning method. Specifically, we consider the data structure and the priors of labels as two resampling factors to correct the observed distribution. By introducing the true similarity as latent variable, these two factors are integrated into a maximum likelihood estimation model. As a result, Re-KISSME can reason the underlying similarity of each pair and reduce the influence of label noise to estimate the metric matrix. Our model is solved by iterative algorithm with low computational cost. With synthetic label noise, the experiments on UCI datasets and two application datasets of person re-identification confirm the effectiveness of our proposal. (C) 2018 Elsevier B.V. All rights reserved. |
WOS关键词 | PERSON REIDENTIFICATION ; CLASSIFICATION |
资助项目 | National Key R&D Program of China[2017YFC0803700] ; National Natural Science Foundation of China[U1636220] ; National Natural Science Foundation of China[61602482] ; National Natural Science Foundation of China[61501463] ; Beijing Natural Science Foundation[4172063] |
WOS研究方向 | Computer Science |
语种 | 英语 |
WOS记录号 | WOS:000454789500014 |
出版者 | ELSEVIER SCIENCE BV |
资助机构 | National Key R&D Program of China ; National Natural Science Foundation of China ; Beijing Natural Science Foundation |
源URL | [http://ir.ia.ac.cn/handle/173211/25631] ![]() |
专题 | 精密感知与控制研究中心_人工智能与机器学习 |
通讯作者 | Zhang, Wensheng |
作者单位 | 1.Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China 2.Chinese Acad Sci, Inst Automat, Res Ctr Precis Sensing & Control, Beijing 100190, Peoples R China 3.Univ Chinese Acad Sci, Beijing, Peoples R China |
推荐引用方式 GB/T 7714 | Zeng, Fanxia,Zhang, Wensheng,Zhang, Siheng,et al. Re-KISSME: A robust resampling scheme for distance metric learning in the presence of label noise[J]. NEUROCOMPUTING,2019,330:138-150. |
APA | Zeng, Fanxia,Zhang, Wensheng,Zhang, Siheng,&Zheng, Nan.(2019).Re-KISSME: A robust resampling scheme for distance metric learning in the presence of label noise.NEUROCOMPUTING,330,138-150. |
MLA | Zeng, Fanxia,et al."Re-KISSME: A robust resampling scheme for distance metric learning in the presence of label noise".NEUROCOMPUTING 330(2019):138-150. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。