中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
An existence-uniqueness theorem and alternating contraction projection methods for inverse variational inequalities

文献类型:期刊论文

作者He,Songnian; Dong,Qiao-Li
刊名Journal of Inequalities and Applications
出版日期2018-12-18
卷号2018期号:1
关键词Inverse variational inequality Variational inequality Lipschitz continuous Strongly monotone 47J20 90C25 90C30 90C52
ISSN号1029-242X
DOI10.1186/s13660-018-1943-0
英文摘要AbstractLet C be a nonempty closed convex subset of a real Hilbert space H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{H}$\end{document} with inner product ??,??\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\langle \cdot , \cdot \rangle $\end{document}, and let f:H→H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f: \mathcal{H}\rightarrow \mathcal{H}$\end{document} be a nonlinear operator. Consider the inverse variational inequality (in short, IVI(C,f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\operatorname{IVI}(C,f)$\end{document}) problem of finding a point ξ?∈H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\xi ^{*}\in \mathcal{H}$\end{document} such that f(ξ?)∈C,?ξ?,v?f(ξ?)?≥0,?v∈C.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ f\bigl(\xi ^{*}\bigr)\in C, \quad \bigl\langle \xi ^{*}, v-f \bigl(\xi ^{*}\bigr)\bigr\rangle \geq 0, \quad \forall v\in C. $$\end{document} In this paper, we prove that IVI(C,f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\operatorname{IVI}(C,f)$\end{document} has a unique solution if f is Lipschitz continuous and strongly monotone, which essentially improves the relevant result in (Luo and Yang in Optim. Lett. 8:1261–1272, 2014). Based on this result, an iterative algorithm, named the alternating contraction projection method (ACPM), is proposed for solving Lipschitz continuous and strongly monotone inverse variational inequalities. The strong convergence of the ACPM is proved and the convergence rate estimate is obtained. Furthermore, for the case that the structure of C is very complex and the projection operator PC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$P_{C}$\end{document} is difficult to calculate, we introduce the alternating contraction relaxation projection method (ACRPM) and prove its strong convergence. Some numerical experiments are provided to show the practicability and effectiveness of our algorithms. Our results in this paper extend and improve the related existing results.
语种英语
WOS记录号BMC:10.1186/S13660-018-1943-0
出版者Springer International Publishing
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/31502]  
专题中国科学院数学与系统科学研究院
通讯作者Dong,Qiao-Li
作者单位
推荐引用方式
GB/T 7714
He,Songnian,Dong,Qiao-Li. An existence-uniqueness theorem and alternating contraction projection methods for inverse variational inequalities[J]. Journal of Inequalities and Applications,2018,2018(1).
APA He,Songnian,&Dong,Qiao-Li.(2018).An existence-uniqueness theorem and alternating contraction projection methods for inverse variational inequalities.Journal of Inequalities and Applications,2018(1).
MLA He,Songnian,et al."An existence-uniqueness theorem and alternating contraction projection methods for inverse variational inequalities".Journal of Inequalities and Applications 2018.1(2018).

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。