中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Higher Cohomology Vanishing of Line Bundles on Generalized Springer Resolution

文献类型:期刊论文

作者Hu, Yue
刊名FUNCTIONAL ANALYSIS AND ITS APPLICATIONS
出版日期2018-07-01
卷号52期号:3页码:214-223
关键词Kostka-Shoji polynomials cohomology vanishing quivers Lusztig convolution diagram
ISSN号0016-2663
DOI10.1007/s10688-018-0230-7
英文摘要A conjecture of Michael Finkelberg and Andrei Ionov is proved on the basis of a generalization of the Springer resolution and the Grauert-Riemenschneider vanishing theorem. As a corollary, it is proved that the coefficients of the multivariable version of Kostka functions introduced by Finkelberg and Ionov are nonnegative.
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000448794900006
出版者PLEIADES PUBLISHING INC
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/31667]  
专题中国科学院数学与系统科学研究院
通讯作者Hu, Yue
作者单位Univ Chinese Acad Sci, Acad Math & Syst Sci, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Hu, Yue. Higher Cohomology Vanishing of Line Bundles on Generalized Springer Resolution[J]. FUNCTIONAL ANALYSIS AND ITS APPLICATIONS,2018,52(3):214-223.
APA Hu, Yue.(2018).Higher Cohomology Vanishing of Line Bundles on Generalized Springer Resolution.FUNCTIONAL ANALYSIS AND ITS APPLICATIONS,52(3),214-223.
MLA Hu, Yue."Higher Cohomology Vanishing of Line Bundles on Generalized Springer Resolution".FUNCTIONAL ANALYSIS AND ITS APPLICATIONS 52.3(2018):214-223.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。