Higher Cohomology Vanishing of Line Bundles on Generalized Springer Resolution
文献类型:期刊论文
作者 | Hu, Yue |
刊名 | FUNCTIONAL ANALYSIS AND ITS APPLICATIONS
![]() |
出版日期 | 2018-07-01 |
卷号 | 52期号:3页码:214-223 |
关键词 | Kostka-Shoji polynomials cohomology vanishing quivers Lusztig convolution diagram |
ISSN号 | 0016-2663 |
DOI | 10.1007/s10688-018-0230-7 |
英文摘要 | A conjecture of Michael Finkelberg and Andrei Ionov is proved on the basis of a generalization of the Springer resolution and the Grauert-Riemenschneider vanishing theorem. As a corollary, it is proved that the coefficients of the multivariable version of Kostka functions introduced by Finkelberg and Ionov are nonnegative. |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000448794900006 |
出版者 | PLEIADES PUBLISHING INC |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/31667] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Hu, Yue |
作者单位 | Univ Chinese Acad Sci, Acad Math & Syst Sci, Beijing, Peoples R China |
推荐引用方式 GB/T 7714 | Hu, Yue. Higher Cohomology Vanishing of Line Bundles on Generalized Springer Resolution[J]. FUNCTIONAL ANALYSIS AND ITS APPLICATIONS,2018,52(3):214-223. |
APA | Hu, Yue.(2018).Higher Cohomology Vanishing of Line Bundles on Generalized Springer Resolution.FUNCTIONAL ANALYSIS AND ITS APPLICATIONS,52(3),214-223. |
MLA | Hu, Yue."Higher Cohomology Vanishing of Line Bundles on Generalized Springer Resolution".FUNCTIONAL ANALYSIS AND ITS APPLICATIONS 52.3(2018):214-223. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。