中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Asymptotic stability of harmonic maps between 2D hyperbolic spaces under the wave map equation. II. Small energy case

文献类型:期刊论文

作者Li, Ze1; Ma, Xiao2; Zhao, Lifeng2
刊名DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS
出版日期2018
卷号15期号:4页码:283-336
关键词wave map equation hyperbolic spaces asymptotic stability harmonic maps curved spacetime
ISSN号1548-159X
英文摘要In this paper, we prove that the small energy harmonic maps from H-2 to H-2 are asymptotically stable under the wave map equation in the subcritical perturbation class. This result may be seen as an example supporting the soliton resolution conjecture for geometric wave equations without equivariant assumptions on the initial data. In this paper, we construct Tao's caloric gauge in the case when nontrivial harmonic map occurs. With the "dynamic separation" the master equation of the heat tension field appears as a semilinear magnetic wave equation. By the endpoint and weighted Strichartz estimates for magnetic wave equations obtained by the first author [38], the asymptotic stability follows by a bootstrap argument.
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000452189000003
出版者INT PRESS BOSTON, INC
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/31952]  
专题中国科学院数学与系统科学研究院
通讯作者Li, Ze
作者单位1.Chinese Acad Sci, Acad Math & Syst Sci, Inst Math, Beijing, Peoples R China
2.Univ Sci & Technol China, Dept Math, Hefei, Anhui, Peoples R China
推荐引用方式
GB/T 7714
Li, Ze,Ma, Xiao,Zhao, Lifeng. Asymptotic stability of harmonic maps between 2D hyperbolic spaces under the wave map equation. II. Small energy case[J]. DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS,2018,15(4):283-336.
APA Li, Ze,Ma, Xiao,&Zhao, Lifeng.(2018).Asymptotic stability of harmonic maps between 2D hyperbolic spaces under the wave map equation. II. Small energy case.DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS,15(4),283-336.
MLA Li, Ze,et al."Asymptotic stability of harmonic maps between 2D hyperbolic spaces under the wave map equation. II. Small energy case".DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS 15.4(2018):283-336.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。