Erdos-Ginzburg-Ziv theorem and Noether number for C-m proportional to(phi) C-mn
文献类型:期刊论文
作者 | Han, Dongchun1; Zhang, Hanbin2 |
刊名 | JOURNAL OF NUMBER THEORY
![]() |
出版日期 | 2019-05-01 |
卷号 | 198页码:159-175 |
关键词 | Zero-sum theory Davenport constant Erdos-Ginzburg-Ziv theorem Noether number |
ISSN号 | 0022-314X |
DOI | 10.1016/j.jnt.2018.10.007 |
英文摘要 | Let G be a multiplicative finite group and S = a(1) ..... a(k) a sequence over G. We call S a product-one sequence if 1 = Pi(k)(i=1) a(tau(i)) holds for some permutation tau of {1, ..., k}. The small Davenport constant d(G) is the maximal length of a product-one free sequence over G. For a subset L subset of N, let s(L)(G) denote the smallest l is an element of N-0 U {infinity} such that every sequence S over G of length vertical bar S vertical bar >= l has a product-one subsequence T of length vertical bar T vertical bar is an element of L. Denote e(G) = max{ord(g) : g is an element of G}. Some classical product-one (zero-sum) invariants including D(G) := s(N)(G) (when G is abelian), E(G) := s({vertical bar G vertical bar})(G), s(G) := S ({e(G)})(G), eta(G) := s([1,e(G)]) (G) and s(dN)(G) (d is an element of N) have received a lot of studies. The Noether number beta(G) which is closely related to zero-sum theory is defined to be the maximal degree bound for the generators of the algebra of polynomial invariants. Let G congruent to C-m proportional to(phi) C-mn, in this paper, we prove that E(G) = d(G) + vertical bar G vertical bar = m(2)n + m + mn - 2 and beta(G) = d(G) + 1 = m + mn - 1. We also prove that s(mnN)(G) = m + 2mn - 2 and provide the upper bounds of eta(G), s(G). Moreover, if G is a non-cyclic nilpotent group and p is the smallest prime divisor of vertical bar G vertical bar, we prove that beta(G) <= vertical bar G vertical bar/p + p - 1 except if p = 2 and G is a dicyclic group, in which case beta(G) = 1/2 vertical bar G vertical bar + 2. (C) 2018 Elsevier Inc. All rights reserved. |
资助项目 | National Science Foundation of China[11671218] ; National Science Foundation of China[11601448] ; Fundamental Research Funds for the Central Universities[2682016CX121] ; China Postdoctoral Science Foundation[2017M620936] |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000457814900007 |
出版者 | ACADEMIC PRESS INC ELSEVIER SCIENCE |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/32503] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Zhang, Hanbin |
作者单位 | 1.Southwest Jiaotong Univ, Dept Math, Chengdu 610000, Sichuan, Peoples R China 2.Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 | Han, Dongchun,Zhang, Hanbin. Erdos-Ginzburg-Ziv theorem and Noether number for C-m proportional to(phi) C-mn[J]. JOURNAL OF NUMBER THEORY,2019,198:159-175. |
APA | Han, Dongchun,&Zhang, Hanbin.(2019).Erdos-Ginzburg-Ziv theorem and Noether number for C-m proportional to(phi) C-mn.JOURNAL OF NUMBER THEORY,198,159-175. |
MLA | Han, Dongchun,et al."Erdos-Ginzburg-Ziv theorem and Noether number for C-m proportional to(phi) C-mn".JOURNAL OF NUMBER THEORY 198(2019):159-175. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。