中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
REACHABILITY OF A SECOND-ORDER INTEGRO-DIFFERENTIAL EQUATION ON RIEMANNIAN MANIFOLD FOR A VISCOELASTICITY MODEL

文献类型:期刊论文

作者Zhou, Kang1,2
刊名ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS
出版日期2019-02-20
页码16
关键词Reachability integro-differential equation Carleman estimates Riemannian wave
ISSN号1072-6691
英文摘要We study a reachability problem for a second-order integro-differential equation on a finite-dimensional Riemannian manifold, which is a model equation for viscoelasiticity. We apply a Carleman estimate for the wave equations on Riemannian manifolds to establish the observability inequality.
资助项目National Science Foundation of China[61473126] ; National Science Foundation of China[61573342] ; Key Research Program of Frontier Sciences, CAS[QYZDJ-SSW-SYS011]
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000459338500001
出版者TEXAS STATE UNIV
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/32684]  
专题中国科学院数学与系统科学研究院
通讯作者Zhou, Kang
作者单位1.Chinese Acad Sci, Acad Math & Syst Sci, Inst Syst Sci, Key Lab Syst & Control, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Zhou, Kang. REACHABILITY OF A SECOND-ORDER INTEGRO-DIFFERENTIAL EQUATION ON RIEMANNIAN MANIFOLD FOR A VISCOELASTICITY MODEL[J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS,2019:16.
APA Zhou, Kang.(2019).REACHABILITY OF A SECOND-ORDER INTEGRO-DIFFERENTIAL EQUATION ON RIEMANNIAN MANIFOLD FOR A VISCOELASTICITY MODEL.ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS,16.
MLA Zhou, Kang."REACHABILITY OF A SECOND-ORDER INTEGRO-DIFFERENTIAL EQUATION ON RIEMANNIAN MANIFOLD FOR A VISCOELASTICITY MODEL".ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS (2019):16.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。