Elastic-net regularized latent factor analysis-based models for recommender systems
文献类型:期刊论文
作者 | Wang, Dexian1; Chen, Yanbin2,3; Guo, Junxiao2,3; Shi, Xiaoyu2,3![]() ![]() |
刊名 | NEUROCOMPUTING
![]() |
出版日期 | 2019-02-15 |
卷号 | 329页码:66-74 |
关键词 | Big data Recommender systems Collaborative filtering Latent factor analysis Elastic-net Regularization Latent factor distribution |
ISSN号 | 0925-2312 |
DOI | 10.1016/j.neucom.2018.10.046 |
通讯作者 | Luo, Xin(luoxin21@cigit.ac.cn) ; Yuan, Huaqiang(yuanhq@dgut.edu.cn) |
英文摘要 | Latent factor analysis (LFA)-based models are highly efficient in recommender systems. The problem of LFA is defined on high-dimensional and sparse (HiDS) matrices corresponding to relationships among numerous entities in industrial applications. It is ill-posed without a unique and optimal solution, making regularization vital in improving the generality of an LFA-based model. Current models mostly adopt l(2) norm-based regularization, which cannot regularize the latent factor distributions. For addressing this issue, this work applies the elastic-net-based regularization to an LFA-based model, thereby achieving an elastic-net regularized latent factor analysis-based (ERLFA) model. We further adopt two efficient learning algorithms, i.e., forward-looking sub-gradients and forward-backward splitting and stochastic proximal gradient descent, to train desired latent factors in an ERLFA-based model, resulting in two novel ERLFA-based models relying on different learning schemes. Experimental results on four large industrial datasets show that by regularizing the latent factor distribution, the proposed ERLFA-based models are able to achieve high prediction accuracy for missing data of an HiDS matrix without additional computational burden. (C) 2018 Elsevier B.V. All rights reserved. |
资助项目 | National Natural Science Foundation of China[61772493] ; National Natural Science Foundation of China[91646114] ; National Natural Science Foundation of China[61602434] ; National Key Research and Development Program of China[2017YFC0804002] ; Chongqing Cultivation Program of Innovation and Entrepreneurship Demonstration Group[cstc2017kjrc-cxcytd0149] ; Chongqing Research Program of Technology Innovation and Application[cstc2017rgzn-zdyfX0020] ; Chongqing Research Program of Technology Innovation and Application[cstc2017zdcy-zdyf0554] ; Chongqing Research Program of Technology Innovation and Application[cstc2017rgzn-zdyf0118] ; Chongqing Overseas Scholars Innovation Program[cx2017012] ; Chongqing Overseas Scholars Innovation Program[cx2018011] ; Pioneer Hundred Talents Program of Chinese Academy of Sciences |
WOS研究方向 | Computer Science |
语种 | 英语 |
WOS记录号 | WOS:000453924300007 |
出版者 | ELSEVIER SCIENCE BV |
源URL | [http://119.78.100.138/handle/2HOD01W0/7197] ![]() |
专题 | 大数据挖掘及应用中心 |
通讯作者 | Luo, Xin; Yuan, Huaqiang |
作者单位 | 1.Dongguan Univ Technol, Sch Comp Sci & Network Secur, Dongguan 523808, Guangdong, Peoples R China 2.Chinese Acad Sci, Chongqing Engn Res Ctr Big Data Applicat Smart Ci, Chongqing 400714, Peoples R China 3.Chinese Acad Sci, Chongqing Inst Green & Intelligent Technol, Chongqing Key Lab Big Data & Intelligent Comp, Chongqing 400714, Peoples R China 4.China West Normal Univ, Comp Sch, Nanchong 637002, Sichuan, Peoples R China |
推荐引用方式 GB/T 7714 | Wang, Dexian,Chen, Yanbin,Guo, Junxiao,et al. Elastic-net regularized latent factor analysis-based models for recommender systems[J]. NEUROCOMPUTING,2019,329:66-74. |
APA | Wang, Dexian.,Chen, Yanbin.,Guo, Junxiao.,Shi, Xiaoyu.,He, Chunlin.,...&Yuan, Huaqiang.(2019).Elastic-net regularized latent factor analysis-based models for recommender systems.NEUROCOMPUTING,329,66-74. |
MLA | Wang, Dexian,et al."Elastic-net regularized latent factor analysis-based models for recommender systems".NEUROCOMPUTING 329(2019):66-74. |
入库方式: OAI收割
来源:重庆绿色智能技术研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。