Twofold correlation filtering for tracking integration
文献类型:期刊论文
作者 | Wang, Wei1,2; Li, Weiguang1,2; Chen, Zhaoming1![]() ![]() |
刊名 | IEICE Transactions on Information and Systems
![]() |
出版日期 | 2018 |
卷号 | E101D期号:10页码:2547-2550 |
ISSN号 | 09168532 |
DOI | 10.1587/transinf.2018EDL8100 |
英文摘要 | In general, effective integrating the advantages of different trackers can achieve unified performance promotion. In this work, we study the integration of multiple correlation filter (CF) trackers; propose a novel but simple tracking integration method that combines different trackers in filter level. Due to the variety of their correlation filter and features, there is no comparability between different CF tracking results for tracking integration. To tackle this, we propose twofold CF to unify these various response maps so that the results of different tracking algorithms can be compared, so as to boost the tracking performance like ensemble learning. Experiment of two CF methods integration on the data sets OTB demonstrates that the proposed method is effective and promising. © 2018 The Institute of Electronics, Information and Communication Engineers. |
电子版国际标准刊号 | 17451361 |
语种 | 英语 |
源URL | [http://119.78.100.138/handle/2HOD01W0/8058] ![]() |
专题 | 智能工业设计工程中心 |
作者单位 | 1.Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, China; 2.University of Chinese Academy of Sciences, China |
推荐引用方式 GB/T 7714 | Wang, Wei,Li, Weiguang,Chen, Zhaoming,et al. Twofold correlation filtering for tracking integration[J]. IEICE Transactions on Information and Systems,2018,E101D(10):2547-2550. |
APA | Wang, Wei,Li, Weiguang,Chen, Zhaoming,&Shi, Mingquan.(2018).Twofold correlation filtering for tracking integration.IEICE Transactions on Information and Systems,E101D(10),2547-2550. |
MLA | Wang, Wei,et al."Twofold correlation filtering for tracking integration".IEICE Transactions on Information and Systems E101D.10(2018):2547-2550. |
入库方式: OAI收割
来源:重庆绿色智能技术研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。