中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Effect of molecular weight and its distribution on the spinodal for polydisperse polymer solutions

文献类型:期刊论文

作者Du, XY; Sun, ZY; An, LJ
刊名CHEMICAL PHYSICS
出版日期2005-04-04
卷号310期号:1-3页码:225-230
关键词Flory-huggins Theory Polymer Solution Polydispersity Spinodals
ISSN号0301-0104
DOI10.1016/j.chemphys.2004.10.033
英文摘要The Flory-Huggins interaction parameter x(r(i)) is considered as dependent on the chain length of a polymer. Therefore, a modified free energy expression of Flory-Huggins theory is obtained for the polydisperse polymer solutions. Based on this modified free energy expression and the thermodynamics of Gibbs, the expression of spinodal for polydisperse polymer solutions is obtained. For a given x(r(i)) according to de Gennes, the spinodals are calculated for polydisperse polymer solutions at different molecular weights and their distributions. It is found that all the interested variables r(n), r(w), r(z) and molecular weight distribution have an effect on the spinodal for polydisperse polymer solutions, where the effect of changing r(w) is much greater than that of changing r(n), r(z) and molecular weight distribution. (C) 2004 Elsevier B.V. All rights reserved.
语种英语
WOS记录号WOS:000227421000025
出版者ELSEVIER SCIENCE BV
源URL[http://ir.iccas.ac.cn/handle/121111/57371]  
专题中国科学院化学研究所
通讯作者Sun, ZY
作者单位Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Polymer Phys & Chem, Changchun 130022, Peoples R China
推荐引用方式
GB/T 7714
Du, XY,Sun, ZY,An, LJ. Effect of molecular weight and its distribution on the spinodal for polydisperse polymer solutions[J]. CHEMICAL PHYSICS,2005,310(1-3):225-230.
APA Du, XY,Sun, ZY,&An, LJ.(2005).Effect of molecular weight and its distribution on the spinodal for polydisperse polymer solutions.CHEMICAL PHYSICS,310(1-3),225-230.
MLA Du, XY,et al."Effect of molecular weight and its distribution on the spinodal for polydisperse polymer solutions".CHEMICAL PHYSICS 310.1-3(2005):225-230.

入库方式: OAI收割

来源:化学研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。