中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Exactly Solvable Points and Symmetry Protected Topological Phases of Quantum Spins on a Zig-Zag Lattice

文献类型:期刊论文

作者Liu, W. Vincent1,2,3,4,5; Guan, Xi-Wen6; Zhao, Erhai7,8; Zou, Haiyuan9
刊名PHYSICAL REVIEW LETTERS
出版日期2019-05-10
卷号122期号:18页码:5
ISSN号0031-9007
DOI10.1103/PhysRevLett.122.180401
英文摘要A large number of symmetry-protected topological (SPT) phases have been hypothesized for strongly interacting spin-1/2 systems in one dimension. Realizing these SPT phases, however, often demands fine-tunings hard to reach experimentally. And the lack of analytical solutions hinders the understanding of their many-body wave functions. Here we show that two kinds of SPT phases naturally arise for ultracold polar molecules confined in a zigzag optical lattice. This system, motivated by recent experiments, is described by a spin model whose exchange couplings can be tuned by an external field to reach parameter regions not studied before for spin chains or ladders. Within the enlarged parameter space, we find the ground state wave function can be obtained exactly along a line and at a special point, for these two phases, respectively. These exact solutions provide a clear physical picture for the SPT phases and their edge excitations. We further obtain the phase diagram by using infinite time-evolving block decimation and discuss the phase transitions between the two SPT phases and their experimental signatures.
资助项目National Natural Science Foundation of China[11804221] ; Science and Technology Commission of Shanghai Municipality[16DZ2260200] ; AFOSR[FA9550-16-1-0006] ; NSF[PHY-1707484] ; MURI-ARO[W911NF-17-1-0323] ; ARO[W911NF-11-1-0230] ; Overseas Scholar Collaborative Program of NSF of China - Peking University[11429402] ; key NSFC[11534014] ; National Key R&D Program of China[2017YFA0304500]
WOS研究方向Physics
语种英语
WOS记录号WOS:000467739200001
出版者AMER PHYSICAL SOC
资助机构National Natural Science Foundation of China ; National Natural Science Foundation of China ; Science and Technology Commission of Shanghai Municipality ; Science and Technology Commission of Shanghai Municipality ; AFOSR ; AFOSR ; NSF ; NSF ; MURI-ARO ; MURI-ARO ; ARO ; ARO ; Overseas Scholar Collaborative Program of NSF of China - Peking University ; Overseas Scholar Collaborative Program of NSF of China - Peking University ; key NSFC ; key NSFC ; National Key R&D Program of China ; National Key R&D Program of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; Science and Technology Commission of Shanghai Municipality ; Science and Technology Commission of Shanghai Municipality ; AFOSR ; AFOSR ; NSF ; NSF ; MURI-ARO ; MURI-ARO ; ARO ; ARO ; Overseas Scholar Collaborative Program of NSF of China - Peking University ; Overseas Scholar Collaborative Program of NSF of China - Peking University ; key NSFC ; key NSFC ; National Key R&D Program of China ; National Key R&D Program of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; Science and Technology Commission of Shanghai Municipality ; Science and Technology Commission of Shanghai Municipality ; AFOSR ; AFOSR ; NSF ; NSF ; MURI-ARO ; MURI-ARO ; ARO ; ARO ; Overseas Scholar Collaborative Program of NSF of China - Peking University ; Overseas Scholar Collaborative Program of NSF of China - Peking University ; key NSFC ; key NSFC ; National Key R&D Program of China ; National Key R&D Program of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; Science and Technology Commission of Shanghai Municipality ; Science and Technology Commission of Shanghai Municipality ; AFOSR ; AFOSR ; NSF ; NSF ; MURI-ARO ; MURI-ARO ; ARO ; ARO ; Overseas Scholar Collaborative Program of NSF of China - Peking University ; Overseas Scholar Collaborative Program of NSF of China - Peking University ; key NSFC ; key NSFC ; National Key R&D Program of China ; National Key R&D Program of China
源URL[http://ir.wipm.ac.cn/handle/112942/13678]  
专题中国科学院武汉物理与数学研究所
通讯作者Zou, Haiyuan
作者单位1.Southern Univ Sci & Technol, Dept Phys, Shenzhen 518055, Peoples R China
2.Southern Univ Sci & Technol, Shenzhen Inst Quantum Sci & Engn, Shenzhen 518055, Peoples R China
3.Shanghai Jiao Tong Univ, TD Lee Inst, Shanghai 200240, Peoples R China
4.Shanghai Jiao Tong Univ, Wilczek Quantum Ctr, Sch Phys & Astron, Shanghai 200240, Peoples R China
5.Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA
6.Chinese Acad Sci, Wuhan Inst Phys & Math, State Key Lab Magnet Resonance & Atom & Mol Phys, Wuhan 430071, Hubei, Peoples R China
7.George Mason Univ, Quantum Mat Ctr, Fairfax, VA 22030 USA
8.George Mason Univ, Dept Phys & Astron, Fairfax, VA 22030 USA
9.Shanghai Jiao Tong Univ, Tsung Dao Lee Inst, Shanghai 200240, Peoples R China
推荐引用方式
GB/T 7714
Liu, W. Vincent,Guan, Xi-Wen,Zhao, Erhai,et al. Exactly Solvable Points and Symmetry Protected Topological Phases of Quantum Spins on a Zig-Zag Lattice[J]. PHYSICAL REVIEW LETTERS,2019,122(18):5.
APA Liu, W. Vincent,Guan, Xi-Wen,Zhao, Erhai,&Zou, Haiyuan.(2019).Exactly Solvable Points and Symmetry Protected Topological Phases of Quantum Spins on a Zig-Zag Lattice.PHYSICAL REVIEW LETTERS,122(18),5.
MLA Liu, W. Vincent,et al."Exactly Solvable Points and Symmetry Protected Topological Phases of Quantum Spins on a Zig-Zag Lattice".PHYSICAL REVIEW LETTERS 122.18(2019):5.

入库方式: OAI收割

来源:武汉物理与数学研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。