A new waveform decomposition method for multispectral LiDAR
文献类型:期刊论文
作者 | Shi, Shuo1; Sun, Jia1; Lin, Xin2; Chen, Zhenwei2; Gong, Wei1; Wang, Binhui1; Song, Shalei2 |
刊名 | ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING
![]() |
出版日期 | 2019-03-01 |
卷号 | 149页码:40-49 |
关键词 | Full waveform Multispectral LiDAR Gaussian decomposition Parameters extraction |
ISSN号 | 0924-2716 |
DOI | 10.1016/j.isprsjprs.2019.01.014 |
英文摘要 | Information derived from waveform decomposition of full-waveform light detection and ranging (LiDAR) data has been widely used in vegetation detection and three-dimensional urban terrain modeling to investigate and interpret the structural diversity of surface coverage. Most prevailing waveform decomposition methods involve only a single wavelength, but these methods do not apply to full-waveform multispectral LiDAR (FWMSL) systems that simultaneously acquire spectral and geometric information. In this paper, we propose a new multispectral waveform decomposition (MSWD) method in order to explore the potential advantages of the FWMSL system. Both simulated data and measured data from our FWMSL system were used to evaluate the performance of the proposed method. The coefficient of determination (R-2), root mean square error (RMSE), and relative error (rRMSE) metrics suggest that the decomposition results derived from MSWD exhibit a comparable overall fitting accuracy as a single wavelength waveform decomposition (SWWD) method. We also propose a new evaluation indicator, relative neighbor distance error (RNDE), to represent the relative error in the distance between adjacent targets. The simulation results present clear superiority of MSWD over SWWD in terms of discovering weak or overlapping components and retrieving accurate waveform parameters. The experimental results demonstrated a considerable improvement in RNDE (0.0100-0.0610) over the prevailing SWWD method (0.0566-0.2833). Unlike SWWD, MSWD initializes waveform components using mutually complementary wavelengths thus delivering higher completeness and accuracy. MSWD can be extended to other FWMSL or full-waveform hyperspectral LiDAR systems with additional wavelengths. |
WOS关键词 | GAUSSIAN DECOMPOSITION ; CLASSIFICATION ; RETRIEVAL |
资助项目 | National Key R&D Program of China[2018YFB0504500] ; NSFC[41571370] |
WOS研究方向 | Physical Geography ; Geology ; Remote Sensing ; Imaging Science & Photographic Technology |
语种 | 英语 |
WOS记录号 | WOS:000461535600004 |
出版者 | ELSEVIER SCIENCE BV |
资助机构 | National Key R&D Program of China ; National Key R&D Program of China ; NSFC ; NSFC ; National Key R&D Program of China ; National Key R&D Program of China ; NSFC ; NSFC ; National Key R&D Program of China ; National Key R&D Program of China ; NSFC ; NSFC ; National Key R&D Program of China ; National Key R&D Program of China ; NSFC ; NSFC |
源URL | [http://ir.wipm.ac.cn/handle/112942/13873] ![]() |
专题 | 中国科学院武汉物理与数学研究所 |
通讯作者 | Wang, Binhui |
作者单位 | 1.Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan 430079, Hubei, Peoples R China 2.Chinese Acad Sci, Wuhan Inst Phys & Math, State Key Lab Magnet Resonance & Atom & Mol Phys, Wuhan 430071, Hubei, Peoples R China |
推荐引用方式 GB/T 7714 | Shi, Shuo,Sun, Jia,Lin, Xin,et al. A new waveform decomposition method for multispectral LiDAR[J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING,2019,149:40-49. |
APA | Shi, Shuo.,Sun, Jia.,Lin, Xin.,Chen, Zhenwei.,Gong, Wei.,...&Song, Shalei.(2019).A new waveform decomposition method for multispectral LiDAR.ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING,149,40-49. |
MLA | Shi, Shuo,et al."A new waveform decomposition method for multispectral LiDAR".ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING 149(2019):40-49. |
入库方式: OAI收割
来源:武汉物理与数学研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。