Stability of supersonic contact discontinuity for two-dimensional steady compressible Euler flows in a finite nozzle
文献类型:期刊论文
作者 | Xiang, Wei1; Wang, Dehua2; Kuang, Jie3,4; Huang, Feimin4,5 |
刊名 | JOURNAL OF DIFFERENTIAL EQUATIONS
![]() |
出版日期 | 2019-03-15 |
卷号 | 266期号:7页码:4337-4376 |
关键词 | Contact discontinuity Supersonic flow Free boundary Compressible Euler equation Finitely long nozzle |
ISSN号 | 0022-0396 |
DOI | 10.1016/j.jde.2018.09.036 |
英文摘要 | In this paper, we study the stability of supersonic contact discontinuity for the two-dimensional steady compressible Euler flows in a finitely long nozzle of varying cross-sections. We formulate the problem as an initial-boundary value problem with the contact discontinuity as a free boundary. To deal with the free boundary value problem, we employ the Lagrangian transformation to straighten the contact discontinuity and then the free boundary value problem becomes a fixed boundary value problem. We develop an iteration scheme and establish some novel estimates of solutions for the first order of hyperbolic equations on a cornered domain. Finally, by using the inverse Lagrangian transformation and under the assumption that the incoming flows and the nozzle walls are smooth perturbations of the background state, we prove that the original free boundary problem admits a unique weak solution which is a small perturbation of the background state and the solution consists of two smooth supersonic flows separated by a smooth contact discontinuity. (C) 2018 Elsevier Inc. All rights reserved. |
WOS关键词 | FREE-BOUNDARY PROBLEMS ; TRANSONIC SHOCKS ; LONG NOZZLE ; EXISTENCE ; EQUATIONS ; VACUUM ; SYSTEM ; DUCT |
资助项目 | NSFC[11801549] ; NSFC[11371349] ; NSFC[11688101] ; NSF[DMS-1312800] ; NSF[DMS-1613213] ; Research Grants Council of the HKSAR, China[CityU 21305215] ; Research Grants Council of the HKSAR, China[CityU 11332916] ; Research Grants Council of the HKSAR, China[CityU 11304817] ; Research Grants Council of the HKSAR, China[CityU 11303518] |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000456433000018 |
出版者 | ACADEMIC PRESS INC ELSEVIER SCIENCE |
资助机构 | NSFC ; NSFC ; NSF ; NSF ; Research Grants Council of the HKSAR, China ; Research Grants Council of the HKSAR, China ; NSFC ; NSFC ; NSF ; NSF ; Research Grants Council of the HKSAR, China ; Research Grants Council of the HKSAR, China ; NSFC ; NSFC ; NSF ; NSF ; Research Grants Council of the HKSAR, China ; Research Grants Council of the HKSAR, China ; NSFC ; NSFC ; NSF ; NSF ; Research Grants Council of the HKSAR, China ; Research Grants Council of the HKSAR, China |
源URL | [http://ir.wipm.ac.cn/handle/112942/14272] ![]() |
专题 | 中国科学院武汉物理与数学研究所 |
通讯作者 | Kuang, Jie |
作者单位 | 1.City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China 2.Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA 3.Chinese Acad Sci, Wuhan Inst Phys & Math, Wuhan 430071, Hubei, Peoples R China 4.Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China 5.Hunan Normal Univ, Coll Math & Stat, Changsha 410081, Hunan, Peoples R China |
推荐引用方式 GB/T 7714 | Xiang, Wei,Wang, Dehua,Kuang, Jie,et al. Stability of supersonic contact discontinuity for two-dimensional steady compressible Euler flows in a finite nozzle[J]. JOURNAL OF DIFFERENTIAL EQUATIONS,2019,266(7):4337-4376. |
APA | Xiang, Wei,Wang, Dehua,Kuang, Jie,&Huang, Feimin.(2019).Stability of supersonic contact discontinuity for two-dimensional steady compressible Euler flows in a finite nozzle.JOURNAL OF DIFFERENTIAL EQUATIONS,266(7),4337-4376. |
MLA | Xiang, Wei,et al."Stability of supersonic contact discontinuity for two-dimensional steady compressible Euler flows in a finite nozzle".JOURNAL OF DIFFERENTIAL EQUATIONS 266.7(2019):4337-4376. |
入库方式: OAI收割
来源:武汉物理与数学研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。