中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Stability of supersonic contact discontinuity for two-dimensional steady compressible Euler flows in a finite nozzle

文献类型:期刊论文

作者Xiang, Wei1; Wang, Dehua2; Kuang, Jie3,4; Huang, Feimin4,5
刊名JOURNAL OF DIFFERENTIAL EQUATIONS
出版日期2019-03-15
卷号266期号:7页码:4337-4376
关键词Contact discontinuity Supersonic flow Free boundary Compressible Euler equation Finitely long nozzle
ISSN号0022-0396
DOI10.1016/j.jde.2018.09.036
英文摘要In this paper, we study the stability of supersonic contact discontinuity for the two-dimensional steady compressible Euler flows in a finitely long nozzle of varying cross-sections. We formulate the problem as an initial-boundary value problem with the contact discontinuity as a free boundary. To deal with the free boundary value problem, we employ the Lagrangian transformation to straighten the contact discontinuity and then the free boundary value problem becomes a fixed boundary value problem. We develop an iteration scheme and establish some novel estimates of solutions for the first order of hyperbolic equations on a cornered domain. Finally, by using the inverse Lagrangian transformation and under the assumption that the incoming flows and the nozzle walls are smooth perturbations of the background state, we prove that the original free boundary problem admits a unique weak solution which is a small perturbation of the background state and the solution consists of two smooth supersonic flows separated by a smooth contact discontinuity. (C) 2018 Elsevier Inc. All rights reserved.
WOS关键词FREE-BOUNDARY PROBLEMS ; TRANSONIC SHOCKS ; LONG NOZZLE ; EXISTENCE ; EQUATIONS ; VACUUM ; SYSTEM ; DUCT
资助项目NSFC[11801549] ; NSFC[11371349] ; NSFC[11688101] ; NSF[DMS-1312800] ; NSF[DMS-1613213] ; Research Grants Council of the HKSAR, China[CityU 21305215] ; Research Grants Council of the HKSAR, China[CityU 11332916] ; Research Grants Council of the HKSAR, China[CityU 11304817] ; Research Grants Council of the HKSAR, China[CityU 11303518]
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000456433000018
出版者ACADEMIC PRESS INC ELSEVIER SCIENCE
资助机构NSFC ; NSFC ; NSF ; NSF ; Research Grants Council of the HKSAR, China ; Research Grants Council of the HKSAR, China ; NSFC ; NSFC ; NSF ; NSF ; Research Grants Council of the HKSAR, China ; Research Grants Council of the HKSAR, China ; NSFC ; NSFC ; NSF ; NSF ; Research Grants Council of the HKSAR, China ; Research Grants Council of the HKSAR, China ; NSFC ; NSFC ; NSF ; NSF ; Research Grants Council of the HKSAR, China ; Research Grants Council of the HKSAR, China
源URL[http://ir.wipm.ac.cn/handle/112942/14272]  
专题中国科学院武汉物理与数学研究所
通讯作者Kuang, Jie
作者单位1.City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China
2.Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
3.Chinese Acad Sci, Wuhan Inst Phys & Math, Wuhan 430071, Hubei, Peoples R China
4.Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
5.Hunan Normal Univ, Coll Math & Stat, Changsha 410081, Hunan, Peoples R China
推荐引用方式
GB/T 7714
Xiang, Wei,Wang, Dehua,Kuang, Jie,et al. Stability of supersonic contact discontinuity for two-dimensional steady compressible Euler flows in a finite nozzle[J]. JOURNAL OF DIFFERENTIAL EQUATIONS,2019,266(7):4337-4376.
APA Xiang, Wei,Wang, Dehua,Kuang, Jie,&Huang, Feimin.(2019).Stability of supersonic contact discontinuity for two-dimensional steady compressible Euler flows in a finite nozzle.JOURNAL OF DIFFERENTIAL EQUATIONS,266(7),4337-4376.
MLA Xiang, Wei,et al."Stability of supersonic contact discontinuity for two-dimensional steady compressible Euler flows in a finite nozzle".JOURNAL OF DIFFERENTIAL EQUATIONS 266.7(2019):4337-4376.

入库方式: OAI收割

来源:武汉物理与数学研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。