Transient structure of thin films based on one-dimensional chain model
文献类型:期刊论文
作者 | Guo, X; Li, MH![]() ![]() ![]() ![]() |
刊名 | ACTA PHYSICA SINICA物理学报
![]() |
出版日期 | 2017 |
卷号 | 66期号:18页码:186202 |
关键词 | one-dimensional linear chain model ultrafast X-ray diffraction lattice deformation |
ISSN号 | 1000-3290 |
DOI | 10.7498/aps.66.186202 |
其他题名 | 利用一维原子链模型研究薄膜瞬态结构变化 |
文献子类 | Article |
英文摘要 | Functional materials have received much attention in the development of scientific technology. Macroscopic function of material is usually linked to the microscopic properties. In order to understand the relationship between structure and function, it is necessary to observe transient structural change of material in real time. In the earlier experimental work femtosecond optical probes were used to measure associated modulation in optical properties like transmissivity or reflectivity and extract the information about structural dynamics through sophisticated theoretical modeling. Since the development of laser-based ultrafast X-ray sources, there has been extensive work on femtosecond X-ray diffraction measurements. The coupling of sensitive X-ray with time-resolved pump-probe technique provides a way to directly monitor the time-dependent lattice structural changes in condensed matter. Recent researches are devoted to the study of non-thermal melting and coherent acoustic photons. The classical continuous elastic equation can only provide a limited view of structural dynamics. So, simulation of structural dynamics at an atomic level and comparison of such simulation with time-resolved X-ray diffraction data are necessary. In this paper, we use the one-dimensional chain model to study the effect of thermal stress on the lattice due to the inhomogeneity of temperature distribution after ultrafast laser heating. It is developed from the classic continuous elastic equation by considering a nanometer film as a chain of point mass connected by springs. The simulation can directly reveal the positon of each point mass (atom) as a function of time for a given temperature (stress) profile. The simulation results accord very well with experimental data obtained with femtosecond X-ray diffraction. Compared with simulation results, the ultrafast X-ray diffraction experimental results are not enough to distinguish the compression near the zero time, but the characteristic time (similar to 123 ps) and broadening of the diffraction peak are clearly observed. The simulation and experimental study of the lattice structural response are of great help for understanding the direct relationship between the lattice responses caused by ultrafast laser excitation, the generation and propagation of strain, one-dimensional chain model has important applications in studying the recoverable ultrafast lattice dynamics of metals, semiconductors and other materials. |
WOS关键词 | X-RAY-DIFFRACTION ; LATTICE-DYNAMICS ; LASER-PULSES ; FEMTOSECOND ; ELECTRON ; METALS |
WOS研究方向 | Physics |
语种 | 中文 |
CSCD记录号 | CSCD:6123549 |
WOS记录号 | WOS:000412844500021 |
源URL | [http://ir.ihep.ac.cn/handle/311005/285295] ![]() |
专题 | 高能物理研究所_核技术应用研究中心 高能物理研究所_加速器中心 |
作者单位 | 中国科学院高能物理研究所 |
推荐引用方式 GB/T 7714 | Guo, X,Li, MH,Li, YF,et al. Transient structure of thin films based on one-dimensional chain model[J]. ACTA PHYSICA SINICA物理学报,2017,66(18):186202. |
APA | Guo, X.,Li, MH.,Li, YF.,Tao, MZ.,Wang, JG.,...&李大章.(2017).Transient structure of thin films based on one-dimensional chain model.ACTA PHYSICA SINICA物理学报,66(18),186202. |
MLA | Guo, X,et al."Transient structure of thin films based on one-dimensional chain model".ACTA PHYSICA SINICA物理学报 66.18(2017):186202. |
入库方式: OAI收割
来源:高能物理研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。