Relationships between porphyry Cu–Mo mineralization in the Jinshajiang–Red River metallogenic belt and tectonic activity: Constraints from zircon U–Pb and molybdenite Re–Os geochronology
文献类型:期刊论文
; | |
作者 | Leiluo Xu; Xianwu Bi; Ruizhong Hu; Xingchun Zhang; Wenchao Su; Wenjun Qu; Zhaochu Hu; Yongyong Tang |
刊名 | Ore Geology Reviews
![]() ![]() |
出版日期 | 2012 ; 2012 |
卷号 | 48页码:460-473 |
关键词 | Jinshajiang–red River Porphyry Cu–mo Metallogenic belt Jinshajiang–red River Porphyry Cu–mo Metallogenic belt Porphyry Cu–mo Deposit tectonic Activity zircon U–pb Age molybdenite Re–os Age Porphyry Cu–mo Deposit tectonic Activity zircon U–pb Age molybdenite Re–os Age |
英文摘要 | The Jinshajiang–Red River porphyry Cu–Mo metallogenic belt is an important Cenozoic porphyry Cu–Mo mineralization concentrating zone in the eastern Indo‐Asian collision zone. New zircon U–Pb and molybdenite Re–Os ages and compilation of previously published ages indicate that porphyry Cu–Mo deposits in the belt did not form at the same time, i.e., the porphyry emplacement and relevant Cu–Mo mineralization ages of the Ailaoshan–Red River ore belt in south range from 36.3 Ma to 34.6 Ma, and from 36.0 Ma to 33.9 Ma, respectively, which are obviously younger than the porphyry emplacement ages of 43.8–36.9 Ma and the relevant Cu–Mo mineralization ages of 41.6–35.8 Ma of the Yulong ore belt in north. Tectonic studies indicated that the Jinshajiang fault system in north and Ailaoshan–Red River fault system in south of the Jinsjiang–Red river belt had different strike-slip patterns and ages. The right-lateral strike-slip motion of the Jinshajiang fault system initiated at ca. 43 Ma with corresponding formation of the Yulong porphyry Cu–Mo system, whereas the left-lateral strike-slip motion of the Ailaoshan–Red River fault system initiated at ca. 36 Ma with corresponding formation of the Ailaoshan–Red River porphyry Cu–Mo system. Therefore, the different ages of porphyry Cu–Mo systems, between in north and south of the Jinshajiang–Red River belt, indicate that the porphyry Cu–Mo mineralization is closely related to the divergent strike-slip movements between the Jinshajiang and Ailaoshan–Red River strike-slip faulting resulted from the Indo‐Asian collision. The tanslithospheric Jinshajiang–Red River faulting caused partial melting of the enriched mantle sources of alkali-rich porphyries by depressurization or/and asthenospheric heating, and facilitated the migration of alkali-rich magmas and the corresponding formation of alkali-rich porphyries and relevant Cu–Mo deposits in the belt. ;The Jinshajiang–Red River porphyry Cu–Mo metallogenic belt is an important Cenozoic porphyry Cu–Mo mineralization concentrating zone in the eastern Indo‐Asian collision zone. New zircon U–Pb and molybdenite Re–Os ages and compilation of previously published ages indicate that porphyry Cu–Mo deposits in the belt did not form at the same time, i.e., the porphyry emplacement and relevant Cu–Mo mineralization ages of the Ailaoshan–Red River ore belt in south range from 36.3 Ma to 34.6 Ma, and from 36.0 Ma to 33.9 Ma, respectively, which are obviously younger than the porphyry emplacement ages of 43.8–36.9 Ma and the relevant Cu–Mo mineralization ages of 41.6–35.8 Ma of the Yulong ore belt in north. Tectonic studies indicated that the Jinshajiang fault system in north and Ailaoshan–Red River fault system in south of the Jinsjiang–Red river belt had different strike-slip patterns and ages. The right-lateral strike-slip motion of the Jinshajiang fault system initiated at ca. 43 Ma with corresponding formation of the Yulong porphyry Cu–Mo system, whereas the left-lateral strike-slip motion of the Ailaoshan–Red River fault system initiated at ca. 36 Ma with corresponding formation of the Ailaoshan–Red River porphyry Cu–Mo system. Therefore, the different ages of porphyry Cu–Mo systems, between in north and south of the Jinshajiang–Red River belt, indicate that the porphyry Cu–Mo mineralization is closely related to the divergent strike-slip movements between the Jinshajiang and Ailaoshan–Red River strike-slip faulting resulted from the Indo‐Asian collision. The tanslithospheric Jinshajiang–Red River faulting caused partial melting of the enriched mantle sources of alkali-rich porphyries by depressurization or/and asthenospheric heating, and facilitated the migration of alkali-rich magmas and the corresponding formation of alkali-rich porphyries and relevant Cu–Mo deposits in the belt. |
语种 | 英语 ; 英语 |
源URL | [http://ir.gyig.ac.cn/handle/42920512-1/9467] ![]() |
专题 | 地球化学研究所_矿床地球化学国家重点实验室 |
作者单位 | 1.State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550002, China 2.Graduate University of Chinese Academy of Sciences, Beijing, 100049, China 3.National Research Center of Geoanalysis, Chinese Academy of Geological Sciences, Beijing, 100037, China 4.State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan, 430074, China |
推荐引用方式 GB/T 7714 | Leiluo Xu,Xianwu Bi,Ruizhong Hu,et al. Relationships between porphyry Cu–Mo mineralization in the Jinshajiang–Red River metallogenic belt and tectonic activity: Constraints from zircon U–Pb and molybdenite Re–Os geochronology, Relationships between porphyry Cu–Mo mineralization in the Jinshajiang–Red River metallogenic belt and tectonic activity: Constraints from zircon U–Pb and molybdenite Re–Os geochronology[J]. Ore Geology Reviews, Ore Geology Reviews,2012, 2012,48, 48:460-473, 460-473. |
APA | Leiluo Xu.,Xianwu Bi.,Ruizhong Hu.,Xingchun Zhang.,Wenchao Su.,...&Yongyong Tang.(2012).Relationships between porphyry Cu–Mo mineralization in the Jinshajiang–Red River metallogenic belt and tectonic activity: Constraints from zircon U–Pb and molybdenite Re–Os geochronology.Ore Geology Reviews,48,460-473. |
MLA | Leiluo Xu,et al."Relationships between porphyry Cu–Mo mineralization in the Jinshajiang–Red River metallogenic belt and tectonic activity: Constraints from zircon U–Pb and molybdenite Re–Os geochronology".Ore Geology Reviews 48(2012):460-473. |
入库方式: OAI收割
来源:地球化学研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。