中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Self-healing performance and corrosion resistance of graphene oxide-mesoporous silicon layer-nanosphere structure coating under marine alternating hydrostatic pressure

文献类型:期刊论文

作者Wang, Wei1,2,3,6; Wang, Hongliang4; Zhao, Jie2,6; Wang, Xin2,6; Xiong, Chuansheng2,3,6; Song, Liying2,3,6; Ding, Rui2,3,6; Han, Peng2,3,6; Li, Weihua2,3,5
刊名CHEMICAL ENGINEERING JOURNAL
出版日期2019-04-01
卷号361页码:792-804
ISSN号1385-8947
关键词Self-healing coating Deep-sea Alternating hydrostatic pressure Corrosion Alternating current scanning electrochemical microscopy
DOI10.1016/j.cej.2018.12.124
通讯作者Wang, Wei(wangwei8038@ouc.edu.cn) ; Song, Liying(songliying0520@163.com) ; Li, Weihua(liweihua@qdio.ac.cn)
英文摘要Alternating hydrostatic pressure (AHP) is the main cause of the marine coating failure of deep-sea tools and equipment. Herein, we synthesized a novel nanostructure, namely, graphene oxide-mesoporous silicon dioxide layer-nanosphere structure loaded with tannic acid (GSLNTA), as a self-healing coating additive. The anticorrosion and anti-AHP performance and the self-healing capability of GSLNTA coating were evaluated through electrochemical impedance spectroscopy, field emission scanning electron microscopy, Fourier-transform infrared spectroscopy, and alternating current scanning electrochemical microscopy (AC-SECM). Results showed that the nanolayer structure of GSLNTA effectively inhibited corrosion mass transmission under simulated deepsea AHP. The nanospheres of GSLNTA released inhibitors to form a ferric tannate film on the exposed metal surface under AHP. The nanolayer and nanosphere of GSLNTA self-healing coating exerted a synergistic effect on anti-corrosion and anti-AHP performance and blocked corrosion factor transmission and coating failure in deepsea applications. AC-SECM revealed the advantages of local impedance complementation of different electrochemical parameters (vertical bar Z vertical bar and -phase) to monitor the self-healing of coatings with GSLNTA. This work also investigated the self-healing performance of alkyd varnish coating embedded with synthetic GSLNTA in protecting steel surfaces. Self-healing materials have an "active healing" capability to prolong the life of organic coatings after unwanted external damage in deep-sea environments.
资助项目National Science Fund for Distinguished Young Scholars[51525903] ; National Natural Science Foundation of China[51709253] ; National Natural Science Foundation of China[51601188] ; Opening Foundation of State Key Laboratory of Marine Resource Utilization in South China Sea[2018005] ; Applied Basic Research Programs of Qingdao[17-1-1-98-jch] ; AoShan Talents Cultivation Program ; Qingdao National Laboratory for Marine Science and Technology[2017ASTCP-OS09] ; Excellent Middle-Aged and Youth Scientist Award Foundation of Shandong Province[BS2014CL005]
WOS研究方向Engineering
语种英语
出版者ELSEVIER SCIENCE SA
WOS记录号WOS:000457096400078
源URL[http://ir.qdio.ac.cn/handle/337002/160822]  
专题海洋研究所_海洋腐蚀与防护研究发展中心
通讯作者Wang, Wei; Song, Liying; Li, Weihua
作者单位1.Ocean Univ China, Inst Mat Sci & Engn, 238 Songling Rd, Qingdao 266100, Peoples R China
2.Chinese Acad Sci, Inst Oceanol, Key Lab Marine Environm Corros & Biofouling, 7 Nanhai Rd, Qingdao 266071, Peoples R China
3.Hainan Univ, Key Lab Marine Resource Utilizat South China Sea, Haikou 570228, Hainan, Peoples R China
4.State Ocean Adm, Natl Deep Sea Ctr, Qingdao 266237, Peoples R China
5.Sun Yat Sen Univ, Sch Chem Engn & Technol, Zhuhai 519082, Peoples R China
6.Qingdao Natl Lab Marine Sci & Technol, 1 Wenhai Rd, Qingdao 266237, Peoples R China
推荐引用方式
GB/T 7714
Wang, Wei,Wang, Hongliang,Zhao, Jie,et al. Self-healing performance and corrosion resistance of graphene oxide-mesoporous silicon layer-nanosphere structure coating under marine alternating hydrostatic pressure[J]. CHEMICAL ENGINEERING JOURNAL,2019,361:792-804.
APA Wang, Wei.,Wang, Hongliang.,Zhao, Jie.,Wang, Xin.,Xiong, Chuansheng.,...&Li, Weihua.(2019).Self-healing performance and corrosion resistance of graphene oxide-mesoporous silicon layer-nanosphere structure coating under marine alternating hydrostatic pressure.CHEMICAL ENGINEERING JOURNAL,361,792-804.
MLA Wang, Wei,et al."Self-healing performance and corrosion resistance of graphene oxide-mesoporous silicon layer-nanosphere structure coating under marine alternating hydrostatic pressure".CHEMICAL ENGINEERING JOURNAL 361(2019):792-804.

入库方式: OAI收割

来源:海洋研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。