Anisotropic aspects of solubility behavior in the demineralization of cortical bone revealed by XRD analysis
文献类型:期刊论文
作者 | Danilchenko, Sergei1; Kalinkevich, Aleksei1; Zhovner, Mykhailo1; Kuznetsov, Vladimir1; Li, He2; Wang, Jufang2 |
刊名 | JOURNAL OF BIOLOGICAL PHYSICS
![]() |
出版日期 | 2019-03-01 |
卷号 | 45期号:1页码:77-88 |
关键词 | Apatite X-ray diffraction Cortical bone Crystal orientation Morphology Demineralization Crystallite size |
ISSN号 | 0092-0606 |
DOI | 10.1007/s10867-018-9516-5 |
通讯作者 | Kalinkevich, Aleksei(kalinkevich@gmail.com) |
英文摘要 | Dissolution of cortical bone mineral under demineralization in 0.1M HCl and 0.1M EDTA solutions is studied by X-ray diffraction (XRD). The bone specimens (in the form of planar oriented pieces) were cut from a diaphysial fragment of a mature mammal bone so that a cross-section surface and a longitudinal section surface could be analyzed individually. This permitted to compare the dissolution behavior of bone apatite of different morphologies: crystals having the c-axis of the hexagonal unit-cell generally parallel to the long axis of the bone (major morphology) and those having the c-axis almost perpendicular to the bone axis (minor morphology). For these two types of morphology, the crystallite sizes in two mutually perpendicular directions (namely, [002] and [310]) were estimated by Scherrer formula in the initial and the stepwise-demineralized specimens. The data obtained reveal that the crystals belonging to the minor morphology dissolve faster than the crystals of the major morphological type, despite the fact that the crystallites of the minor morphology seem to be only a little smaller than those of the major morphology; the apatite crystallites irrespective of the morphology type are elongated in the c-axis direction. We hypothesize that the revealed difference in solubility may be caused by diverse chemical modifications of apatite of these two morphological types, since the solubility of apatite is strictly regulated by anionic and cationic substitutions in the lattice. The anisotropy effect in solubility of bone mineral seems to be functionally predetermined and this should be a crucial factor in the resorption and remodeling behavior of a bone. Some challenges arising at XRD examination of partially decalcified cortical bone blocks are discussed, as well as the limitations of estimation of bone crystallite size by XRD line-broadening analysis. |
收录类别 | SCI |
WOS关键词 | X-RAY-DIFFRACTION ; CRYSTALLITE SIZE ; CARBONATED APATITE ; MODEL ; ORIENTATION ; SHAPE |
WOS研究方向 | Biophysics |
WOS类目 | Biophysics |
语种 | 英语 |
WOS记录号 | WOS:000460742900006 |
出版者 | SPRINGER |
URI标识 | http://www.irgrid.ac.cn/handle/1471x/2555539 |
专题 | 寒区旱区环境与工程研究所 |
通讯作者 | Kalinkevich, Aleksei |
作者单位 | 1.NAS Ukraine, Inst Appl Phys, Sumy, Ukraine 2.Chinese Acad Sci, Inst Modern Phys, Lanzhou, Gansu, Peoples R China |
推荐引用方式 GB/T 7714 | Danilchenko, Sergei,Kalinkevich, Aleksei,Zhovner, Mykhailo,et al. Anisotropic aspects of solubility behavior in the demineralization of cortical bone revealed by XRD analysis[J]. JOURNAL OF BIOLOGICAL PHYSICS,2019,45(1):77-88. |
APA | Danilchenko, Sergei,Kalinkevich, Aleksei,Zhovner, Mykhailo,Kuznetsov, Vladimir,Li, He,&Wang, Jufang.(2019).Anisotropic aspects of solubility behavior in the demineralization of cortical bone revealed by XRD analysis.JOURNAL OF BIOLOGICAL PHYSICS,45(1),77-88. |
MLA | Danilchenko, Sergei,et al."Anisotropic aspects of solubility behavior in the demineralization of cortical bone revealed by XRD analysis".JOURNAL OF BIOLOGICAL PHYSICS 45.1(2019):77-88. |
入库方式: iSwitch采集
来源:寒区旱区环境与工程研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。