A New Hybrid Forecasting Approach Applied to Hydrological Data: A Case Study on Precipitation in Northwestern China
文献类型:期刊论文
作者 | Jiao, Guimei1; Guo, Tianlin1; Ding, Yongjian2 |
刊名 | WATER
![]() |
出版日期 | 2016-09-01 |
卷号 | 8期号:9页码:15 |
关键词 | ensemble empirical mode decomposition radial basis function neural networks support vector machine hybrid approach precipitation prediction |
ISSN号 | 2073-4441 |
DOI | 10.3390/w8090367 |
通讯作者 | Jiao, Guimei(gmjiao@lzu.edu.cn) |
英文摘要 | Hydrogeological disasters occur frequently. Proposing an effective prediction method for hydrology data can play a guiding role in disaster prevention; however, due to the complexity and instability of hydrological data, this is difficult. This paper proposes a new hybrid forecasting model based on ensemble empirical mode decomposition (EEMD), radial basis function neural networks (RBFN), and support vector machine (SVM), this is the EEMD-RBFN-SVM method, which has achieved effective results in forecasting hydrologic data. The data were collected from the Yushu Tibetan Autonomous Region of the Qinghai Province. To validate the method, the proposed hybrid model was compared to the RBFN, EEMD-RBFN, and SAM-ESM-RBFN models, and the results show that the proposed hybrid model had a better generalization ability. |
收录类别 | SCI |
WOS关键词 | EMPIRICAL MODE DECOMPOSITION ; EXTREME LEARNING MACHINES ; NEURAL-NETWORK MODEL ; TIME-SERIES ; ARTIFICIAL-INTELLIGENCE ; EEMD DECOMPOSITION ; PREDICTION ; RAINFALL ; OPTIMIZATION ; ACCURACY |
WOS研究方向 | Water Resources |
WOS类目 | Water Resources |
语种 | 英语 |
WOS记录号 | WOS:000385482400007 |
出版者 | MDPI AG |
URI标识 | http://www.irgrid.ac.cn/handle/1471x/2557428 |
专题 | 寒区旱区环境与工程研究所 |
通讯作者 | Jiao, Guimei |
作者单位 | 1.Lanzhou Univ, Sch Math & Stat, Gansu Key Lab Appl Math & Complex Syst, Lanzhou 730000, Peoples R China 2.Chinese Acad Sci, Cold & Arid Reg Environm & Engn Res Inst, State Key Lab Cryosphere Sci, Lanzhou 730000, Peoples R China |
推荐引用方式 GB/T 7714 | Jiao, Guimei,Guo, Tianlin,Ding, Yongjian. A New Hybrid Forecasting Approach Applied to Hydrological Data: A Case Study on Precipitation in Northwestern China[J]. WATER,2016,8(9):15. |
APA | Jiao, Guimei,Guo, Tianlin,&Ding, Yongjian.(2016).A New Hybrid Forecasting Approach Applied to Hydrological Data: A Case Study on Precipitation in Northwestern China.WATER,8(9),15. |
MLA | Jiao, Guimei,et al."A New Hybrid Forecasting Approach Applied to Hydrological Data: A Case Study on Precipitation in Northwestern China".WATER 8.9(2016):15. |
入库方式: iSwitch采集
来源:寒区旱区环境与工程研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。