中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Hyperspectral Images Classification With Gabor Filtering and Convolutional Neural Network

文献类型:期刊论文

作者Chen, Yushi1; Zhu, Lin1; Ghamisi, Pedram2,3; Jia, Xiuping4; Li, Guoyu5; Tang, Liang6
刊名IEEE GEOSCIENCE AND REMOTE SENSING LETTERS
出版日期2017-12-01
卷号14期号:12页码:2355-2359
关键词Convolutional neural network (CNN) deep learning feature extraction (FE) Gabor filtering hyperspectral images (HSIs)
ISSN号1545-598X
DOI10.1109/LGRS.2017.2764915
通讯作者Chen, Yushi(chenyushi@hit.edu.cn) ; Tang, Liang(hit_tl@163.com)
英文摘要Recently, the capability of deep learning-based approaches, especially deep convolutional neural networks (CNNs), has been investigated for hyperspectral remote sensing feature extraction (FE) and classification. Due to the large number of learnable parameters in convolutional filters, lots of training samples are needed in deep CNNs to avoid the overfitting problem. On the other hand, Gabor filtering can effectively extract spatial information including edges and textures, which may reduce the FE burden of the CNNs. In this letter, in order to make the most of deep CNN and Gabor filtering, a new strategy, which combines Gabor filters with convolutional filters, is proposed for hyperspectral image classification to mitigate the problem of overfitting. The obtained results reveal that the proposed model provides competitive results in terms of classification accuracy, especially when only a limited number of training samples are available.
收录类别SCI
WOS关键词SPATIAL CLASSIFICATION ; PROFILES
WOS研究方向Geochemistry & Geophysics ; Engineering ; Remote Sensing ; Imaging Science & Photographic Technology
WOS类目Geochemistry & Geophysics ; Engineering, Electrical & Electronic ; Remote Sensing ; Imaging Science & Photographic Technology
语种英语
WOS记录号WOS:000418116500037
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
URI标识http://www.irgrid.ac.cn/handle/1471x/2558031
专题寒区旱区环境与工程研究所
通讯作者Chen, Yushi; Tang, Liang
作者单位1.Harbin Inst Technol, Sch Elect & Informat Engn, Harbin 150001, Heilongjiang, Peoples R China
2.German Aerosp Ctr DLR, Remote Sensing Technol Inst IMF, D-82234 Wessling, Germany
3.Tech Univ Munich, Signal Proc Earth Observat, D-80333 Munich, Germany
4.Univ New South Wales, Sch Engn & Informat Technol, Canberra, NSW 2600, Australia
5.Chinese Acad Sci, State Key Lab Frozen Soil Engn, Cold & Arid Reg Environm & Engn Res Inst, Lanzhou 730000, Peoples R China
6.Harbin Inst Technol, Sch Civil Engn, Harbin 150001, Heilongjiang, Peoples R China
推荐引用方式
GB/T 7714
Chen, Yushi,Zhu, Lin,Ghamisi, Pedram,et al. Hyperspectral Images Classification With Gabor Filtering and Convolutional Neural Network[J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS,2017,14(12):2355-2359.
APA Chen, Yushi,Zhu, Lin,Ghamisi, Pedram,Jia, Xiuping,Li, Guoyu,&Tang, Liang.(2017).Hyperspectral Images Classification With Gabor Filtering and Convolutional Neural Network.IEEE GEOSCIENCE AND REMOTE SENSING LETTERS,14(12),2355-2359.
MLA Chen, Yushi,et al."Hyperspectral Images Classification With Gabor Filtering and Convolutional Neural Network".IEEE GEOSCIENCE AND REMOTE SENSING LETTERS 14.12(2017):2355-2359.

入库方式: iSwitch采集

来源:寒区旱区环境与工程研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。