中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Using multiple radiometric correction images to estimate leaf area index

文献类型:期刊论文

作者Gu, Zhujun1,2,3; Shi, Xuezheng1; Li, Lin4; Yu, Dongsheng1; Liu, Liusong1; Zhang, Wentai1
刊名INTERNATIONAL JOURNAL OF REMOTE SENSING
出版日期2011
卷号32期号:24页码:9441-9454
ISSN号0143-1161
DOI10.1080/01431161.2011.562251
通讯作者Shi, Xuezheng(xzshi@issas.ac.cn)
英文摘要Ecological applications of remote-sensing techniques are generally limited to images after atmospheric correction, though other radiometric correction data are potentially valuable. In this article, six spectral vegetation indices (VIs) were derived from a SPOT 5 image at four radiometric correction levels: digital number (DN), at-sensor radiance (SR), top of atmosphere reflectance (TOA) and post-atmospheric correction reflectance (PAC). These VIs include the normalized difference vegetation index (NDVI), ratio vegetation index (RVI), slope ratio of radiation curve (K), general radiance level (L), visible-infrared radiation balance (B) and band radiance variation (V). They were then related to the leaf area index (LAI), acquired from in situ measurement in Hetian town, Fujian Province, China. The VI-LAI correlation coefficients varied greatly across vegetation types, VIs as well as image radiometric correction levels, and were not surely increased by image radiometric corrections. Among all 330 VI-LAI models established, the R(2) of multi-variable models were generally higher than those of the single-variable ones. The independent variables of the best VI-LAI models contained all VIs from all radiometric correction levels, showing the potentials of multi-radiometric correction images in LAI estimating. The results indicated that the use of VIs from multiple radiometric correction images can better exploit the capabilities of remote-sensing information, thus improving the accuracy of LAI estimating.
收录类别SCI
WOS关键词ATMOSPHERIC CORRECTION ; SATELLITE DATA ; ETM+ DATA ; VEGETATION ; VALIDATION ; REGRESSION ; MODEL ; ALGORITHM ; NETWORK ; IKONOS
WOS研究方向Remote Sensing ; Imaging Science & Photographic Technology
WOS类目Remote Sensing ; Imaging Science & Photographic Technology
语种英语
WOS记录号WOS:000298376000030
出版者TAYLOR & FRANCIS LTD
URI标识http://www.irgrid.ac.cn/handle/1471x/2558866
专题南京土壤研究所
通讯作者Shi, Xuezheng
作者单位1.Chinese Acad Sci, Inst Soil Sci, State Key Lab Soil & Sustainable Agr, Nanjing 210008, Peoples R China
2.Nanjing Xiaozhuang Univ, Sch Biochem & Environm Engn, Nanjing 211171, Jiangsu, Peoples R China
3.Nanjing Univ, Int Inst Earth Syst Sci, Nanjing 210093, Jiangsu, Peoples R China
4.Indiana Univ Purdue Univ Indianapolis, Dept Earth Sci, Indianapolis, IN 46202 USA
推荐引用方式
GB/T 7714
Gu, Zhujun,Shi, Xuezheng,Li, Lin,et al. Using multiple radiometric correction images to estimate leaf area index[J]. INTERNATIONAL JOURNAL OF REMOTE SENSING,2011,32(24):9441-9454.
APA Gu, Zhujun,Shi, Xuezheng,Li, Lin,Yu, Dongsheng,Liu, Liusong,&Zhang, Wentai.(2011).Using multiple radiometric correction images to estimate leaf area index.INTERNATIONAL JOURNAL OF REMOTE SENSING,32(24),9441-9454.
MLA Gu, Zhujun,et al."Using multiple radiometric correction images to estimate leaf area index".INTERNATIONAL JOURNAL OF REMOTE SENSING 32.24(2011):9441-9454.

入库方式: iSwitch采集

来源:南京土壤研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。