中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
A comparative study of the nanopore structure characteristics of coals and Longmaxi shales in China

文献类型:期刊论文

作者Zhou SW1,2; Liu HL1,2; Chen H1,2; Wang HY1,2; Guo W1,2; Liu DX1,2; Zhang Q1,2; Wu J1,2; Shen WJ (沈伟军)3
刊名ENERGY SCIENCE & ENGINEERING
出版日期2019-09-05
页码14
ISSN号2050-0505
关键词adsorption capacity CBM nanopore structure SEM shale gas specific surface area
DOI10.1002/ese3.458
英文摘要

Both of the coalbed methane (CBM) and shale gas reservoirs are dominated by nanometer-scale pores with their nanopore structures controlling the occurrence, enrichment, and accumulation of natural gas. Low-pressure nitrogen gas adsorption (LP-N(2)GA), low-pressure carbon dioxide gas adsorption (LP-CO(2)GA), high-pressure methane adsorption (HPMA), and field emission scanning electron microscope (FE-SEM) experiments were conducted on 14 different-rank coal samples and nine Longmaxi shale samples collected from various basins in China to compare their nanopore characteristics. The FE-SEM results indicate that the pore structures of both the coal and shale samples consist of nanometer-sized pores that primarily developed in the organic matter. The types of their isothermal adsorption curves are similar. However, the coal and shale samples possess various hysteresis loops, which suggest that the nanopores in shale are open-plated, whereas those in coal are semi-open. Furthermore, the specific surface area (SSA) and pore volume (PV) of the micropores in coal are much larger than those of the mesopores, with the micropore SSAs accounting for 99% of the total SSA in the coal samples. However, the micropore SSAs in the shale samples only account 42.24% of the total SSA. These different nanopore structures reflect their different methane adsorption mechanisms. The methane adsorption of coal is primarily controlled by the micropore SSA, whereas that of shale is primarily controlled by the mesopore SSA. If we use mesopore SSA to analyze its impact on methane adsorption capacity of coal and shale, it will be mismatched. However, no mismatching relationship exists between the total SSAs and adsorption capacities of coal and shale. This study highlights the controlling effect of total SSA on methane adsorption capacity.

分类号Q3
WOS关键词PORE STRUCTURE CHARACTERIZATION ; NUCLEAR-MAGNETIC-RESONANCE ; CH4 ADSORPTION CAPACITY ; GAS-ADSORPTION ; RANK COALS ; SIZE DISTRIBUTIONS ; METHANE ADSORPTION ; FRACTURE NETWORKS ; MERCURY INTRUSION ; N-2 ADSORPTION
资助项目National Science and Technology Major Project[2017ZX05035002-002]
WOS研究方向Energy & Fuels
语种英语
WOS记录号WOS:000485051500001
源URL[http://dspace.imech.ac.cn/handle/311007/79408]  
专题力学研究所_流固耦合系统力学重点实验室(2012-)
通讯作者Liu HL
作者单位1.PetroChina Res Inst Petr Explorat & Dev, Beijing 100083, Peoples R China
2.Natl Energy Shale Gas R&D Expt Ctr, Langfang, Peoples R China
3.Chinese Acad Sci, Inst Mech, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Zhou SW,Liu HL,Chen H,et al. A comparative study of the nanopore structure characteristics of coals and Longmaxi shales in China[J]. ENERGY SCIENCE & ENGINEERING,2019:14.
APA Zhou SW.,Liu HL.,Chen H.,Wang HY.,Guo W.,...&Shen WJ .(2019).A comparative study of the nanopore structure characteristics of coals and Longmaxi shales in China.ENERGY SCIENCE & ENGINEERING,14.
MLA Zhou SW,et al."A comparative study of the nanopore structure characteristics of coals and Longmaxi shales in China".ENERGY SCIENCE & ENGINEERING (2019):14.

入库方式: OAI收割

来源:力学研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。