中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Energy-material nexus: The impacts of national and international energy scenarios on critical metals use in China up to 2050 and their global implications

文献类型:期刊论文

作者Elshkaki, Ayman1; Shen, Lei1,2
刊名ENERGY
出版日期2019-08-01
卷号180页码:903-917
关键词Energy-material nexus Electricity generation technologies Critical metals Resources Scenario analysis China
ISSN号0360-5442
DOI10.1016/j.energy.2019.05.156
通讯作者Elshkaki, Ayman(ayman@igsnrr.ac.cn)
英文摘要Transition to low carbon energy system requires number of metals that are required in other sectors, have limited availability, produced mainly as byproducts in limited countries, and classified critical, which may shift energy system traditional geopolitics. China is main producer of several metals and one of their main consumers, which may have implications on their use in other sectors and in low carbon technologies in other countries. We aim at analyzing electricity generation technologies (EGT) in China, their metals requirements, and their global implications. Metals included are Ag, Te, In, Ge, Se, Ga, Cd, Nd, Dy, Pr, Tb, Pb, Cu, Ni, Al, Fe, Cr, and Zn. Dynamic material flow-stock model and seven energy scenarios are used, combined with material scenarios. Results indicates that most critical metals for energy system are Te, Cr, Ag, Ni, In, Ge, Tb, and Dy, however, technology advancements are expected to reduce risks associated with Ag, In, Dy, and Tb. Energy scenarios are difficult to realize without adequate supply of metals from primary sources, combined with increasing resources efficiency, recycling, and careful selection of technologies. Energy models used to produce these scenarios should include energy-material nexus. Biggest global implications expected for Ge, Te, Tb, and Dy. (C) 2019 Elsevier Ltd. All rights reserved.
WOS关键词GREENHOUSE-GAS EMISSIONS ; MATERIAL FLOW-ANALYSIS ; ELECTRICITY-GENERATION ; DEMAND ; REQUIREMENTS ; STOCKS ; WIND ; TECHNOLOGIES ; CONSTRAINTS ; DRIVEN
资助项目Strategic Priority Research Program of the Chinese Academy of Sciences[XDA19040102] ; National Key Research and Development Program of China[2016YFA0602802] ; International Partnership Program of Chinese Academy of Sciences[131A11KYSB20170117]
WOS研究方向Thermodynamics ; Energy & Fuels
语种英语
WOS记录号WOS:000474315800072
出版者PERGAMON-ELSEVIER SCIENCE LTD
资助机构Strategic Priority Research Program of the Chinese Academy of Sciences ; National Key Research and Development Program of China ; International Partnership Program of Chinese Academy of Sciences
源URL[http://ir.igsnrr.ac.cn/handle/311030/58468]  
专题中国科学院地理科学与资源研究所
通讯作者Elshkaki, Ayman
作者单位1.Chinese Acad Sci, IGSNRR, 11A Datun Rd, Beijing 100101, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Elshkaki, Ayman,Shen, Lei. Energy-material nexus: The impacts of national and international energy scenarios on critical metals use in China up to 2050 and their global implications[J]. ENERGY,2019,180:903-917.
APA Elshkaki, Ayman,&Shen, Lei.(2019).Energy-material nexus: The impacts of national and international energy scenarios on critical metals use in China up to 2050 and their global implications.ENERGY,180,903-917.
MLA Elshkaki, Ayman,et al."Energy-material nexus: The impacts of national and international energy scenarios on critical metals use in China up to 2050 and their global implications".ENERGY 180(2019):903-917.

入库方式: OAI收割

来源:地理科学与资源研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。