中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Object-Based Window Strategy in Thermal Sharpening

文献类型:期刊论文

作者Xia, Haiping1; Chen, Yunhao1; Quan, Jinling2; Li, Jing1
刊名REMOTE SENSING
出版日期2019-03-02
卷号11期号:6页码:16
关键词segmentation object-based downscaling remote sensing land surface temperature
ISSN号2072-4292
DOI10.3390/rs11060634
通讯作者Chen, Yunhao(cyh@bnu.edu.cn)
英文摘要The trade-off between spatial and temporal resolutions has led to the disaggregation of remotely sensed land surface temperatures (LSTs) for better applications. The window used for regression is one of the primary factors affecting the disaggregation accuracy. Global window strategies (GWSs) and local window strategies (LWSs) have been widely used and discussed, while object-based window strategies (OWSs) have rarely been considered. Therefore, this study presents an OWS based on a segmentation algorithm and provides a basis for selecting an optimal window size balancing both accuracy and efficiency. The OWS is tested with Landsat 8 data and simulated data via the aggregation-then-disaggregation strategy, and compared with the GWS and LWS. Results tested with the Landsat 8 data indicate that the proposed OWS can accurately and efficiently generate high-resolution LSTs. In comparison to the GWS, the OWS improves the mean accuracy by 0.19 K at different downscaling ratios, in particular by 0.30 K over urban areas; compared with the LWS, the OWS performs better in most cases but performs slightly worse due to the increasing downscaling ratio in some cases. Results tested with the simulated data indicate that the OWS is always superior to both GWS and LWS regardless of the downscaling ratios, and the OWS improves the mean accuracy by 0.44 K and 0.19 K in comparison to the GWS and LWS, respectively. These findings suggest the potential ability of the OWS to generate super-high-resolution LSTs over heterogeneous regions when the pixels within the object-based windows derived via segmentation algorithms are more homogenous.
WOS关键词URBAN HEAT-ISLAND ; SURFACE TEMPERATURES ; SPATIAL-RESOLUTION ; INDEX ; IMAGERY ; FLUXES
资助项目National Natural Science Foundation of China[41771448] ; National Natural Science Foundation of China[41571342] ; Project of State Key Laboratory of Earth Surface Processes and Resource Ecology[2017-ZY-03] ; Science and Technology Plans of Ministry of Housing and Urban-Rural Development of the People's Republic of China ; Opening Projects of Beijing Advanced Innovation Center for Future Urban Design, Beijing University of Civil Engineering and Architecture[UDC2017030212] ; Opening Projects of Beijing Advanced Innovation Center for Future Urban Design, Beijing University of Civil Engineering and Architecture[UDC201650100] ; Beijing Laboratory of Water Resources Security
WOS研究方向Remote Sensing
语种英语
WOS记录号WOS:000465615300033
出版者MDPI
资助机构National Natural Science Foundation of China ; Project of State Key Laboratory of Earth Surface Processes and Resource Ecology ; Science and Technology Plans of Ministry of Housing and Urban-Rural Development of the People's Republic of China ; Opening Projects of Beijing Advanced Innovation Center for Future Urban Design, Beijing University of Civil Engineering and Architecture ; Beijing Laboratory of Water Resources Security
源URL[http://ir.igsnrr.ac.cn/handle/311030/59542]  
专题中国科学院地理科学与资源研究所
通讯作者Chen, Yunhao
作者单位1.Beijing Normal Univ, Fac Geog Sci, State Key Lab Earth Surface Proc & Resource Ecol, Beijing 100875, Peoples R China
2.Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, State Key Lab Resources & Environm Informat Syst, Beijing 100101, Peoples R China
推荐引用方式
GB/T 7714
Xia, Haiping,Chen, Yunhao,Quan, Jinling,et al. Object-Based Window Strategy in Thermal Sharpening[J]. REMOTE SENSING,2019,11(6):16.
APA Xia, Haiping,Chen, Yunhao,Quan, Jinling,&Li, Jing.(2019).Object-Based Window Strategy in Thermal Sharpening.REMOTE SENSING,11(6),16.
MLA Xia, Haiping,et al."Object-Based Window Strategy in Thermal Sharpening".REMOTE SENSING 11.6(2019):16.

入库方式: OAI收割

来源:地理科学与资源研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。