Monitoring carbon dioxide from space: Retrieval algorithm and flux inversion based on GOSAT data and using CarbonTracker-China
文献类型:期刊论文
作者 | Yang, Dongxu1; Zhang, Huifang2; Liu, Yi1![]() ![]() |
刊名 | ADVANCES IN ATMOSPHERIC SCIENCES
![]() |
出版日期 | 2017-08-01 |
卷号 | 34期号:8页码:965-976 |
关键词 | retrieval algorithm satellite remote sensing CO2 carbon flux GOSAT |
ISSN号 | 0256-1530 |
DOI | 10.1007/s00376-017-6221-4 |
通讯作者 | Liu, Yi(liuyi@mail.iap.ac.cn) |
英文摘要 | Monitoring atmospheric carbon dioxide (CO2) from space-borne state-of-the-art hyperspectral instruments can provide a high precision global dataset to improve carbon flux estimation and reduce the uncertainty of climate projection. Here, we introduce a carbon flux inversion system for estimating carbon flux with satellite measurements under the support of "The Strategic Priority Research Program of the Chinese Academy of Sciences-Climate Change: Carbon Budget and Relevant Issues". The carbon flux inversion system is composed of two separate parts: the Institute of Atmospheric Physics Carbon Dioxide Retrieval Algorithm for Satellite Remote Sensing (IAPCAS), and CarbonTracker-China (CT-China), developed at the Chinese Academy of Sciences. The Greenhouse gases Observing SATellite (GOSAT) measurements are used in the carbon flux inversion experiment. To improve the quality of the IAPCAS-GOSAT retrieval, we have developed a post-screening and bias correction method, resulting in 25%-30% of the data remaining after quality control. Based on these data, the seasonal variation of XCO2 (column-averaged CO2 dry-air mole fraction) is studied, and a strong relation with vegetation cover and population is identified. Then, the IAPCAS-GOSAT XCO2 product is used in carbon flux estimation by CT-China. The net ecosystem CO2 exchange is -0.34 Pg C yr(-1) (+/- 0.08 Pg C yr(-1)), with a large error reduction of 84%, which is a significant improvement on the error reduction when compared with in situ-only inversion. |
WOS关键词 | ATMOSPHERIC CO2 ; GREENHOUSE GASES ; REGIONAL CO2 ; SCATTERING ; SATELLITE ; SINKS ; XCO2 ; SENSITIVITY ; VALIDATION ; EXCHANGE |
资助项目 | Strategic Priority Research Program-Climate Change: Carbon Budget and Relevant Issues[XDA05040200] ; National Key Research and Development Program of China[2016YFA0600203] ; National Natural Science Foundation of China[41375035] ; National Natural Science Foundation of China[31500402] ; Chinese Academy of Sciences Strategic Priority Program on Space Science[XDA04077300] |
WOS研究方向 | Meteorology & Atmospheric Sciences |
语种 | 英语 |
WOS记录号 | WOS:000404557000004 |
出版者 | SCIENCE PRESS |
资助机构 | Strategic Priority Research Program-Climate Change: Carbon Budget and Relevant Issues ; National Key Research and Development Program of China ; National Natural Science Foundation of China ; Chinese Academy of Sciences Strategic Priority Program on Space Science |
源URL | [http://ir.igsnrr.ac.cn/handle/311030/63182] ![]() |
专题 | 中国科学院地理科学与资源研究所 |
通讯作者 | Liu, Yi |
作者单位 | 1.Chinese Acad Sci, Inst Atmospher Phys, Key Lab Middle Atmosphere & Global Environm Obser, Beijing 100029, Peoples R China 2.Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, State Key Lab Resources & Environm Informat Syst, Beijing 100101, Peoples R China 3.Univ Chinese Acad Sci, Beijing 100049, Peoples R China 4.Jiangsu Ctr Collaborat Innovat Geog Informat Reso, Nanjing 210023, Jiangsu, Peoples R China |
推荐引用方式 GB/T 7714 | Yang, Dongxu,Zhang, Huifang,Liu, Yi,et al. Monitoring carbon dioxide from space: Retrieval algorithm and flux inversion based on GOSAT data and using CarbonTracker-China[J]. ADVANCES IN ATMOSPHERIC SCIENCES,2017,34(8):965-976. |
APA | Yang, Dongxu,Zhang, Huifang,Liu, Yi,Chen, Baozhang,Cai, Zhaonan,&Lu, Daren.(2017).Monitoring carbon dioxide from space: Retrieval algorithm and flux inversion based on GOSAT data and using CarbonTracker-China.ADVANCES IN ATMOSPHERIC SCIENCES,34(8),965-976. |
MLA | Yang, Dongxu,et al."Monitoring carbon dioxide from space: Retrieval algorithm and flux inversion based on GOSAT data and using CarbonTracker-China".ADVANCES IN ATMOSPHERIC SCIENCES 34.8(2017):965-976. |
入库方式: OAI收割
来源:地理科学与资源研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。