中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Retrieval of land surface temperature and emissivity from ASTER1B data using a dynamic learning neural network

文献类型:期刊论文

作者Mao, Kebiao1,2,3,4,5,6; Li, Sanmei7; Wang, Daolong1,2,3; Zhang, Lixin8; Wang, Xiufeng9; Tang, Huajun1,2,3; Li, Zhao-Liang10,11
刊名INTERNATIONAL JOURNAL OF REMOTE SENSING
出版日期2011
卷号32期号:19页码:5413-5423
文献子类Article
英文摘要The accuracy of a radiance transfer model neural network (RM-NN) for separating land surface temperature (LST) and emissivity from AST09 (the Advanced Spaceborne and Thermal Emission and Reflection Radiometer (ASTER) Standard Data Product, surface leaving radiance) is very high, but it is limited by the accuracy of the atmospheric correction. This article uses a neural network and radiance transfer model (MODTRAN4) to directly retrieve the LST and emissivity from ASTER1B data, which overcomes the difficulty of atmospheric correction in previous methods. The retrieval average accuracy of LST is about 1.1 K, and the average accuracy of emissivity in bands 11-14 is under 0.016 for simulated data when the input nodes are a combination of brightness temperature in bands 11-14. The average accuracy of LST is under 0.8 K when the input nodes are a combination of water vapour content and brightness temperature in bands 11-14. Finally, the comparison of retrieval results with ground measurement data indicates that the RM-NN can be used to accurately retrieve LST and emissivity from ASTER1B data.
WOS关键词MODIS DATA ; ALGORITHM ; IMAGERY
语种英语
WOS记录号WOS:000298369400007
出版者TAYLOR & FRANCIS LTD
源URL[http://ir.igsnrr.ac.cn/handle/311030/68065]  
专题中国科学院地理科学与资源研究所
通讯作者Mao, Kebiao
作者单位1.Chinese Acad Agr Sci, Key Lab Resources Remote Sensing & Digital Agr, Minist Agr, Beijing 100081, Peoples R China
2.Chinese Acad Agr Sci, Key Lab Agrometeorol Safeguard & Appl Tech, China Meteorol Assoc, Beijing 100081, Peoples R China
3.Chinese Acad Agr Sci, Inst Agr Resources & Reg Planning, Beijing 100081, Peoples R China
4.Chinese Acad Sci, State Key Lab Remote Sensing Sci, Inst Remote Sensing Applicat, Beijing 100101, Peoples R China
5.Beijing Normal Univ, Beijing 100101, Peoples R China
6.Lanzhou Univ, Minist Educ, Key Lab Semiarid Climate Change, Lanzhou 730000, Peoples R China
7.China Meteorol Assoc, Natl Satellite Meteorol Ctr, Beijing 100081, Peoples R China
8.Beijing Normal Univ, Sch Geog, Beijing 100875, Peoples R China
9.Hokkaido Univ, Grad Sch Agr, Kita Ku, Sapporo, Hokkaido 0608589, Japan
10.Ecole Natl Super Phys Strasbourg, UMR 7005, Lab Sci Image Informat & Teledetect, F-67412 Illkirch Graffenstaden, France
推荐引用方式
GB/T 7714
Mao, Kebiao,Li, Sanmei,Wang, Daolong,et al. Retrieval of land surface temperature and emissivity from ASTER1B data using a dynamic learning neural network[J]. INTERNATIONAL JOURNAL OF REMOTE SENSING,2011,32(19):5413-5423.
APA Mao, Kebiao.,Li, Sanmei.,Wang, Daolong.,Zhang, Lixin.,Wang, Xiufeng.,...&Li, Zhao-Liang.(2011).Retrieval of land surface temperature and emissivity from ASTER1B data using a dynamic learning neural network.INTERNATIONAL JOURNAL OF REMOTE SENSING,32(19),5413-5423.
MLA Mao, Kebiao,et al."Retrieval of land surface temperature and emissivity from ASTER1B data using a dynamic learning neural network".INTERNATIONAL JOURNAL OF REMOTE SENSING 32.19(2011):5413-5423.

入库方式: OAI收割

来源:地理科学与资源研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。