A comparative analysis of approaches for successional vegetation classification in the Brazilian Amazon
文献类型:期刊论文
作者 | Lu, Dengsheng1,2; Li, Guiying2; Moran, Emilio2; Kuang, Wenhui3![]() |
刊名 | GISCIENCE & REMOTE SENSING
![]() |
出版日期 | 2014-11-02 |
卷号 | 51期号:6页码:695-709 |
关键词 | Brazilian Amazon Nonparametric Classification Algorithms Successional Vegetation Alos Palsar Landsat |
文献子类 | Article |
英文摘要 | Research on separation of successional stages has been an active topic for the past two decades because successional vegetation plays an important role in the carbon budget and restoration of soil fertility in the Brazilian Amazon. This article examines classification of successional stages by conducting a comparative analysis of classification algorithms (maximum likelihood classifier - MLC, artificial neural network - ANN, K-nearest neighbour - KNN, support vector machine - SVM, classification tree analysis - CTA, and object-based classification - OBC) on varying remote-sensing data-sets (Landsat and ALOS PALSAR). Through this research we obtained the following four major conclusions: (1) Landsat data provide higher classification accuracy than ALOS PALSAR data, and individual PALSAR data cannot effectively separate successional stages; (2) Fusion of Landsat and PALSAR data provides better classification than individual sensor data; (3) Depending on the data-set, the best classification algorithm varies, MLC and CTA are recommended for Landsat or fusion images; and KNN is recommended for the combination of Landsat and PALSAR data as extra bands; (4) the MLC based on fusion images is recommended for vegetation classification in the moist tropical region when sufficiently representative training samples are available. |
WOS关键词 | LAND-COVER CLASSIFICATION ; REGENERATING TROPICAL FOREST ; OBJECT-BASED CLASSIFICATION ; THEMATIC MAPPER IMAGERY ; REMOTELY-SENSED DATA ; SECONDARY FORESTS ; SPATIAL-RESOLUTION ; EASTERN AMAZONIA ; SENSING DATA ; TM DATA |
语种 | 英语 |
WOS记录号 | WOS:000346292400006 |
出版者 | TAYLOR & FRANCIS LTD |
源URL | [http://ir.igsnrr.ac.cn/handle/311030/68435] ![]() |
专题 | 中国科学院地理科学与资源研究所 |
通讯作者 | Lu, Dengsheng |
作者单位 | 1.Zhejiang A&F Univ, Sch Environm & Resource Sci, Zhejiang Prov Key Lab Carbon Cycling Forest Ecosy, Hangzhou 311300, Zhejiang, Peoples R China 2.Michigan State Univ, Ctr Global Change & Earth Observat, E Lansing, MI 48824 USA 3.Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Beijing 100101, Peoples R China |
推荐引用方式 GB/T 7714 | Lu, Dengsheng,Li, Guiying,Moran, Emilio,et al. A comparative analysis of approaches for successional vegetation classification in the Brazilian Amazon[J]. GISCIENCE & REMOTE SENSING,2014,51(6):695-709. |
APA | Lu, Dengsheng,Li, Guiying,Moran, Emilio,&Kuang, Wenhui.(2014).A comparative analysis of approaches for successional vegetation classification in the Brazilian Amazon.GISCIENCE & REMOTE SENSING,51(6),695-709. |
MLA | Lu, Dengsheng,et al."A comparative analysis of approaches for successional vegetation classification in the Brazilian Amazon".GISCIENCE & REMOTE SENSING 51.6(2014):695-709. |
入库方式: OAI收割
来源:地理科学与资源研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。