中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Deep neural networks for energy and position reconstruction in EXO-200

文献类型:期刊论文

作者Anton, G; Albert, JB; Dilling, J; Dolgolenko, A; Dolinski, MJ; Fairbank, W; Farine, J; Feyzbakhsh, S; Fierlinger, P; Fudenberg, D
刊名JOURNAL OF INSTRUMENTATION
出版日期2018
卷号13页码:P08023
关键词Analysis and statistical methods Double-beta decay detectors Pattern recognition cluster finding calibration and fitting methods Time projection chambers
ISSN号1748-0221
DOI10.1088/1748-0221/13/08/P08023
文献子类Article
英文摘要We apply deep neural networks (DNN) to data from the EXO-200 experiment. In the studied cases, the DNN is able to reconstruct the relevant parameters - total energy and position - directly from raw digitized waveforms, with minimal exceptions. For the first time, the developed algorithms are evaluated on real detector calibration data. The accuracy of reconstruction either reaches or exceeds what was achieved by the conventional approaches developed by EXO-200 over the course of the experiment. Most existing DNN approaches to event reconstruction and classification in particle physics are trained on Monte Carlo simulated events. Such algorithms are inherently limited by the accuracy of the simulation. We describe a unique approach that, in an experiment such as EXO-200, allows to successfully perform certain reconstruction and analysis tasks by training the network on waveforms from experimental data, either reducing or eliminating the reliance on the Monte Carlo.
WOS研究方向Instruments & Instrumentation
语种英语
WOS记录号WOS:000443201700003
源URL[http://ir.ihep.ac.cn/handle/311005/286252]  
专题高能物理研究所_实验物理中心
高能物理研究所_粒子天体物理中心
作者单位中国科学院高能物理研究所
推荐引用方式
GB/T 7714
Anton, G,Albert, JB,Dilling, J,et al. Deep neural networks for energy and position reconstruction in EXO-200[J]. JOURNAL OF INSTRUMENTATION,2018,13:P08023.
APA Anton, G.,Albert, JB.,Dilling, J.,Dolgolenko, A.,Dolinski, MJ.,...&Coon, M.(2018).Deep neural networks for energy and position reconstruction in EXO-200.JOURNAL OF INSTRUMENTATION,13,P08023.
MLA Anton, G,et al."Deep neural networks for energy and position reconstruction in EXO-200".JOURNAL OF INSTRUMENTATION 13(2018):P08023.

入库方式: OAI收割

来源:高能物理研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。