中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Orbital evolution of a planet with tidal dissipation in a restricted three-body system

文献类型:期刊论文

作者Wang, Wen-Lei1,2,3; Xu, Xue-Qing1,2; Liao, Xin-Hao1,2
刊名RESEARCH IN ASTRONOMY AND ASTROPHYSICS
出版日期2019-09-01
卷号19期号:9页码:18
ISSN号1674-4527
关键词astrometry and celestial mechanics: celestial mechanics planet-star interactions planets and satellites: dynamical evolution and stability
DOI10.1088/1674-4527/19/9/130
通讯作者Wang, Wen-Lei(wangwl@shao.ac.cn)
英文摘要The angle between planetary spin and the normal direction of an orbital plane is supposed to reveal a range of information about the associated planetary formation and evolution. Since the orbit's eccentricity and inclination oscillate periodically in a hierarchical triple body and tidal friction makes the spin parallel to the normal orientation of the orbital plane with a short timescale in an isolated binary system, we focus on the comprehensive effect of third body perturbation and tidal mechanism on the angle. Firstly, we extend the Hut tidal model (1981) to the general spatial case, adopting the equilibrium tide and weak friction hypothesis with constant delay time, which is suitable for arbitrary eccentricity and any angle v between the planetary spin and normal orientation of the orbital plane. Furthermore, under the constraint of angular momentum conservation, the equations of orbital and ratational motion are given. Secondly, considering the coupled effects of tidal dissipation and third body perturbation, and adopting the quadrupole approximation as the third body perturbation effect, a comprehensive model is established by this work. Finally, we find that the ultimate evolution depends on the timescales of the third body and tidal friction. When the timescale of the third body is much shorter than that of tidal friction, the angle v will oscillate for a long time, even over the whole evolution; when the timescale of the third body is observably larger than that of the tidal friction, the system may enter stable states, with the angle v decaying to zero ultimately, and some cases may have a stable inclination beyond the critical value of Lidov-Kozai resonance. In addition, these dynamical evolutions depend on the initial values of the orbital elements and may aid in understanding the characteristics of the orbits of exoplanets.
WOS关键词HOT JUPITERS ; GIANT PLANETS ; STELLAR SPIN ; ECCENTRICITY ; SATELLITES ; FRICTION ; EXOPLANETS ; TIDES ; PERTURBATIONS ; OSCILLATIONS
WOS研究方向Astronomy & Astrophysics
语种英语
出版者NATL ASTRONOMICAL OBSERVATORIES, CHIN ACAD SCIENCES
WOS记录号WOS:000485147000008
源URL[http://libir.pmo.ac.cn/handle/332002/27937]  
专题中国科学院紫金山天文台
通讯作者Wang, Wen-Lei
作者单位1.Chinese Acad Sci, Shanghai Astron Observ, Shanghai 200030, Peoples R China
2.Chinese Acad Sci, Shanghai Astron Observ, Key Lab Planetary Sci, Shanghai 200030, Peoples R China
3.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Wang, Wen-Lei,Xu, Xue-Qing,Liao, Xin-Hao. Orbital evolution of a planet with tidal dissipation in a restricted three-body system[J]. RESEARCH IN ASTRONOMY AND ASTROPHYSICS,2019,19(9):18.
APA Wang, Wen-Lei,Xu, Xue-Qing,&Liao, Xin-Hao.(2019).Orbital evolution of a planet with tidal dissipation in a restricted three-body system.RESEARCH IN ASTRONOMY AND ASTROPHYSICS,19(9),18.
MLA Wang, Wen-Lei,et al."Orbital evolution of a planet with tidal dissipation in a restricted three-body system".RESEARCH IN ASTRONOMY AND ASTROPHYSICS 19.9(2019):18.

入库方式: OAI收割

来源:紫金山天文台

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。