Adaptive Responses to Progressive Drought Stress in Two Populus cathayana Populations
文献类型:期刊论文
作者 | Xiao, XW ; Xu, X ; Yang, F |
刊名 | SILVA FENNICA
![]() |
出版日期 | 2008 |
卷号 | 42期号:5页码:705_719 |
关键词 | malondialdehyde free proline soluble sugars antioxidant enzymes drought tolerance Populus cathayana |
ISSN号 | 0037-5330 |
通讯作者 | Xiao, XW, Chinese Acad Sci, Chengdu Inst Biol, POB 416, Chengdu 610041, Peoples R China. |
中文摘要 | The young, vegetatively propagated cuttings of Populus cathayana Rehder were exposed to a progressive drought stress for 12 weeks in a greenhouse to characterize the physiological and biochemical basis of drought adaptation in woody plants. Two contrasting populations were employed in our study, which were from the wet and dry climate regions in western China, respectively. The results showed that the adaptive responses of P. cathayana to drought were affected by drought intensity and poplar genotype (population). The progressive drought stress significantly inhibited plant growth, increased carotenoid contents and, at the same time, accumulated soluble sugars and free proline in the plants of both populations tested. On the other hand, the gradually increasing drought also induced antioxidative systems including the increase of the activities of superoxide dismutase (SOD) and guaiacol peroxidase (POD). Moreover, there were different responses to progressive drought stress between the two contrasting populations. Compared with the wet climate population, the dry climate population had lower shoot height and growth rate, higher free proline content, and more efficient photoprotective system (such as higher carotenoid content and Car/Chl) and antioxidant system (such as higher POD activity), as a result of drought stress. These results suggest that the dry climate population possesses better drought tolerance than the wet climate population. The differences in drought tolerance may be closely related with efficient photoprotective system, accumulation of the osmoprotectant proline as well as the increased capacity of the antioxidative system to scavenge reactive oxygen species, and the consequent suppressed level of lipid peroxidation under drought conditions. |
学科主题 | Forestry |
收录类别 | SCI |
资助信息 | Outstanding Young Scientist Program of the National Science Foundation of China [30525036]; Program of "Knowledge Innovation Engineering" of the Chinese Academy of Sciences [KSCX2-YW-N-064] |
语种 | 英语 |
公开日期 | 2011-07-08 |
源URL | [http://210.75.237.14/handle/351003/22138] ![]() |
专题 | 成都生物研究所_生态研究 |
推荐引用方式 GB/T 7714 | Xiao, XW,Xu, X,Yang, F. Adaptive Responses to Progressive Drought Stress in Two Populus cathayana Populations[J]. SILVA FENNICA,2008,42(5):705_719. |
APA | Xiao, XW,Xu, X,&Yang, F.(2008).Adaptive Responses to Progressive Drought Stress in Two Populus cathayana Populations.SILVA FENNICA,42(5),705_719. |
MLA | Xiao, XW,et al."Adaptive Responses to Progressive Drought Stress in Two Populus cathayana Populations".SILVA FENNICA 42.5(2008):705_719. |
入库方式: OAI收割
来源:成都生物研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。