Fabrication of large-bulk ultrafine grained 6061 aluminum alloy by rolling and low-heat-input friction stir welding
文献类型:期刊论文
作者 | Liu, CY; Qu, B; Xue, P; Ma, ZY; Luo, K; Ma, MZ; Liu, RP; Ma, ZY (reprint author), Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Liaoning, Peoples R China. |
刊名 | JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
![]() |
出版日期 | 2018 |
卷号 | 34期号:1页码:112-118 |
关键词 | Mechanical-properties Tensile Properties Mg Alloy Microstructure Strength Sheets Joints Composite Precipitation Features |
ISSN号 | 1005-0302 |
英文摘要 | In this study, the ultrafine grained (UFG) 6061 Al alloys fabricated by cold rolling were friction stir welded (FSW) with different rotation rates under both air cooling and rapid cooling in water. Low-heat-input parameters of 400 rpm rotation rate in water (400-Water) could effectively inhibit the coarsening of recrystallized grains, reduce the precipitation rate, and retain more dislocations of the UFG 6061 Al parent metal. 400-Water joint showed high lowest-hardness value, narrow low-hardness zone, and high tensile strength, attributing to the effect of dislocation, grain boundary, solid-solution, and precipitation hardening. This work provides an effective strategy to fabricate large-sized bulk UFG Al alloy by cold rolling with large deformation and low-heat-input FSW. (C) 2017 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.; In this study, the ultrafine grained (UFG) 6061 Al alloys fabricated by cold rolling were friction stir welded (FSW) with different rotation rates under both air cooling and rapid cooling in water. Low-heat-input parameters of 400 rpm rotation rate in water (400-Water) could effectively inhibit the coarsening of recrystallized grains, reduce the precipitation rate, and retain more dislocations of the UFG 6061 Al parent metal. 400-Water joint showed high lowest-hardness value, narrow low-hardness zone, and high tensile strength, attributing to the effect of dislocation, grain boundary, solid-solution, and precipitation hardening. This work provides an effective strategy to fabricate large-sized bulk UFG Al alloy by cold rolling with large deformation and low-heat-input FSW. (C) 2017 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology. |
学科主题 | Materials Science, Multidisciplinary ; Metallurgy & Metallurgical Engineering |
语种 | 英语 |
资助机构 | National Natural Science Foundation of China [51601045]; Guangxi Natural Science Foundation [2015GXNSFBA139238]; Guangxi 'Bagui' Teams for Innovation and Research; National Basic Research Program of China [2013CB733000]; Collaborative Innovation Center for Exploration of Hidden Nonferrous Metal Deposits and Development of New Materials in Guangxi |
公开日期 | 2018-06-05 |
源URL | [http://ir.imr.ac.cn/handle/321006/79609] ![]() |
专题 | 金属研究所_中国科学院金属研究所 |
通讯作者 | Ma, ZY (reprint author), Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Liaoning, Peoples R China. |
推荐引用方式 GB/T 7714 | Liu, CY,Qu, B,Xue, P,et al. Fabrication of large-bulk ultrafine grained 6061 aluminum alloy by rolling and low-heat-input friction stir welding[J]. JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY,2018,34(1):112-118. |
APA | Liu, CY.,Qu, B.,Xue, P.,Ma, ZY.,Luo, K.,...&Ma, ZY .(2018).Fabrication of large-bulk ultrafine grained 6061 aluminum alloy by rolling and low-heat-input friction stir welding.JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY,34(1),112-118. |
MLA | Liu, CY,et al."Fabrication of large-bulk ultrafine grained 6061 aluminum alloy by rolling and low-heat-input friction stir welding".JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY 34.1(2018):112-118. |
入库方式: OAI收割
来源:金属研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。