中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Ion-Solvent Complexes Promote Gas Evolution from Electrolytes on a Sodium Metal Anode

文献类型:期刊论文

作者Chen, X; Shen, X; Li, B; Peng, HJ; Cheng, XB; Li, BQ; Zhang, XQ; Huang, JQ; Zhang, Q; Zhang, Q (reprint author), Tsinghua Univ, Dept Chem Engn, Beijing Key Lab Green Chem React Engn & Technol, Beijing 100084, Peoples R China.
刊名ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
出版日期2018-01-15
卷号57期号:3页码:734-737
关键词Lithium-sulfur Batteries Rechargeable Batteries Deposition Stability Carbonate Liquid
ISSN号1433-7851
英文摘要Lithium and sodium metal batteries are considered as promising next-generation energy storage devices due to their ultrahigh energy densities. The high reactivity of alkali metal toward organic solvents and salts results in side reactions, which further lead to undesirable electrolyte depletion, cell failure, and evolution of flammable gas. Herein, first-principles calculations and insitu optical microscopy are used to study the mechanism of organic electrolyte decomposition and gas evolution on a sodium metal anode. Once complexed with sodium ions, solvent molecules show a reduced LUMO, which facilitates the electrolyte decomposition and gas evolution. Such a general mechanism is also applicable to lithium and other metal anodes. We uncover the critical role of ion-solvent complexation for the stability of alkali metal anodes, reveal the mechanism of electrolyte gassing, and provide a mechanistic guidance to electrolyte and lithium/sodium anode design for safe rechargeable batteries.; Lithium and sodium metal batteries are considered as promising next-generation energy storage devices due to their ultrahigh energy densities. The high reactivity of alkali metal toward organic solvents and salts results in side reactions, which further lead to undesirable electrolyte depletion, cell failure, and evolution of flammable gas. Herein, first-principles calculations and insitu optical microscopy are used to study the mechanism of organic electrolyte decomposition and gas evolution on a sodium metal anode. Once complexed with sodium ions, solvent molecules show a reduced LUMO, which facilitates the electrolyte decomposition and gas evolution. Such a general mechanism is also applicable to lithium and other metal anodes. We uncover the critical role of ion-solvent complexation for the stability of alkali metal anodes, reveal the mechanism of electrolyte gassing, and provide a mechanistic guidance to electrolyte and lithium/sodium anode design for safe rechargeable batteries.
学科主题Chemistry, Multidisciplinary
语种英语
资助机构National Key Research and Development Program [2016YFA0202500, 2016YFA0200102]; National Natural Scientific Foundation of China [21676160]
公开日期2018-06-05
源URL[http://ir.imr.ac.cn/handle/321006/79580]  
专题金属研究所_中国科学院金属研究所
通讯作者Zhang, Q (reprint author), Tsinghua Univ, Dept Chem Engn, Beijing Key Lab Green Chem React Engn & Technol, Beijing 100084, Peoples R China.; Zhang, Q (reprint author), Nankai Univ, Minist Educ, Key Lab Adv Energy Mat Chem, Tianjin 300071, Peoples R China.
推荐引用方式
GB/T 7714
Chen, X,Shen, X,Li, B,et al. Ion-Solvent Complexes Promote Gas Evolution from Electrolytes on a Sodium Metal Anode[J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION,2018,57(3):734-737.
APA Chen, X.,Shen, X.,Li, B.,Peng, HJ.,Cheng, XB.,...&Zhang, Q .(2018).Ion-Solvent Complexes Promote Gas Evolution from Electrolytes on a Sodium Metal Anode.ANGEWANDTE CHEMIE-INTERNATIONAL EDITION,57(3),734-737.
MLA Chen, X,et al."Ion-Solvent Complexes Promote Gas Evolution from Electrolytes on a Sodium Metal Anode".ANGEWANDTE CHEMIE-INTERNATIONAL EDITION 57.3(2018):734-737.

入库方式: OAI收割

来源:金属研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。