中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Absence of Dirac states in BaZnBi2 induced by spin-orbit coupling

文献类型:期刊论文

作者Ren, WJ; Wang, AF; Graf, D; Liu, Y; Zhang, ZD; Yin, WG; Petrovic, C; Ren, WJ (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA.; Ren, WJ (reprint author), Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Liaoning, Peoples R China.
刊名PHYSICAL REVIEW B
出版日期2018-01-22
卷号97期号:3页码:-
关键词Topological Insulators Ultrahigh Mobility Magnetoresistance Graphene
ISSN号2469-9950
英文摘要We report magnetotransport properties of BaZnBi2 single crystals. Whereas electronic structure features Dirac states, such states are removed from the Fermi level by spin-orbit coupling (SOC) and consequently electronic transport is dominated by the small hole and electron pockets. Our results are consistent with not only three-dimensional, but also with quasi-two-dimensional portions of the Fermi surface. The SOC-induced gap in Dirac states is much larger when compared to isostructural SrMnBi2. This suggests that not only long-range magnetic order, but also mass of the alkaline-earth atoms A in ABX(2) (A = alkaline-earth, B = transition-metal, and X = Bi/Sb) are important for the presence of low-energy states obeying the relativistic Dirac equation at the Fermi surface.; We report magnetotransport properties of BaZnBi2 single crystals. Whereas electronic structure features Dirac states, such states are removed from the Fermi level by spin-orbit coupling (SOC) and consequently electronic transport is dominated by the small hole and electron pockets. Our results are consistent with not only three-dimensional, but also with quasi-two-dimensional portions of the Fermi surface. The SOC-induced gap in Dirac states is much larger when compared to isostructural SrMnBi2. This suggests that not only long-range magnetic order, but also mass of the alkaline-earth atoms A in ABX(2) (A = alkaline-earth, B = transition-metal, and X = Bi/Sb) are important for the presence of low-energy states obeying the relativistic Dirac equation at the Fermi surface.
学科主题Physics, Condensed Matter
语种英语
资助机构U.S. DOE-BES, Division of Materials Science and Engineering [DE-SC0012704]; National Natural Science Foundation of China [51671192, 51531008]; NSF [DMR-1157490]; state of Florida
公开日期2018-06-05
源URL[http://ir.imr.ac.cn/handle/321006/79572]  
专题金属研究所_中国科学院金属研究所
通讯作者Ren, WJ (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA.; Ren, WJ (reprint author), Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Liaoning, Peoples R China.
推荐引用方式
GB/T 7714
Ren, WJ,Wang, AF,Graf, D,et al. Absence of Dirac states in BaZnBi2 induced by spin-orbit coupling[J]. PHYSICAL REVIEW B,2018,97(3):-.
APA Ren, WJ.,Wang, AF.,Graf, D.,Liu, Y.,Zhang, ZD.,...&Ren, WJ .(2018).Absence of Dirac states in BaZnBi2 induced by spin-orbit coupling.PHYSICAL REVIEW B,97(3),-.
MLA Ren, WJ,et al."Absence of Dirac states in BaZnBi2 induced by spin-orbit coupling".PHYSICAL REVIEW B 97.3(2018):-.

入库方式: OAI收割

来源:金属研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。