中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Evaluation of stress corrosion cracking susceptibility of forged 316 stainless steel in simulated primary water

文献类型:期刊论文

作者Zhu, RL; Wang, JQ; Ming, HL; Zhang, ZM; Han, EH; Wang, JQ (reprint author), Chinese Acad Sci, Inst Met Res, Key Lab Nucl Mat & Safety Assessment, 62 Wencui Rd, Shenyang 110016, Liaoning, Peoples R China.
刊名MATERIALS AND CORROSION-WERKSTOFFE UND KORROSION
出版日期2018-03-01
卷号69期号:3页码:328-336
关键词High-temperature Water Environmentally Assisted Cracking Reactor Primary Water Pwr Primary Water Pressurized-water Dissolved-oxygen Oxidation Behavior Nickel-alloys Growth Metal
ISSN号0947-5117
英文摘要The bolts for the reactor coolant pump are planned to be made of the forged 316 stainless steel. Prior to use, the stress corrosion cracking (SCC) resistance of the material requires investigation in simulated primary water at 320 degrees C. The crack growth rates (CGRs) of two duplicate compact tension (CT) specimens are measured using direct current potential drop method. The effects of stress intensity factor (K, changes from 21 to 41MPam), dissolved oxygen (DO, changes from<10 to 2000ppb) and dissolved hydrogen (DH, 2800ppb) on CGRs are comprehensively examined. The results indicate that CGR increases with increasing K. The forged 316 stainless steel is sensitive to SCC in oxygenated water. Changing oxygenated water to hydrogenated water leads to more than one order of magnitude decreases of CGR. The fracture surface, crack path, and the influence of the crack branching on CGR are discussed.; The bolts for the reactor coolant pump are planned to be made of the forged 316 stainless steel. Prior to use, the stress corrosion cracking (SCC) resistance of the material requires investigation in simulated primary water at 320 degrees C. The crack growth rates (CGRs) of two duplicate compact tension (CT) specimens are measured using direct current potential drop method. The effects of stress intensity factor (K, changes from 21 to 41MPam), dissolved oxygen (DO, changes from<10 to 2000ppb) and dissolved hydrogen (DH, 2800ppb) on CGRs are comprehensively examined. The results indicate that CGR increases with increasing K. The forged 316 stainless steel is sensitive to SCC in oxygenated water. Changing oxygenated water to hydrogenated water leads to more than one order of magnitude decreases of CGR. The fracture surface, crack path, and the influence of the crack branching on CGR are discussed.
学科主题Materials Science, Multidisciplinary ; Metallurgy & Metallurgical Engineering
语种英语
资助机构National Natural Science Foundation of China [51301183]; Key Research Program of Frontier Sciences, CAS [QYZDY-SSW-JSC012]
公开日期2018-06-05
源URL[http://ir.imr.ac.cn/handle/321006/79459]  
专题金属研究所_中国科学院金属研究所
通讯作者Wang, JQ (reprint author), Chinese Acad Sci, Inst Met Res, Key Lab Nucl Mat & Safety Assessment, 62 Wencui Rd, Shenyang 110016, Liaoning, Peoples R China.
推荐引用方式
GB/T 7714
Zhu, RL,Wang, JQ,Ming, HL,et al. Evaluation of stress corrosion cracking susceptibility of forged 316 stainless steel in simulated primary water[J]. MATERIALS AND CORROSION-WERKSTOFFE UND KORROSION,2018,69(3):328-336.
APA Zhu, RL,Wang, JQ,Ming, HL,Zhang, ZM,Han, EH,&Wang, JQ .(2018).Evaluation of stress corrosion cracking susceptibility of forged 316 stainless steel in simulated primary water.MATERIALS AND CORROSION-WERKSTOFFE UND KORROSION,69(3),328-336.
MLA Zhu, RL,et al."Evaluation of stress corrosion cracking susceptibility of forged 316 stainless steel in simulated primary water".MATERIALS AND CORROSION-WERKSTOFFE UND KORROSION 69.3(2018):328-336.

入库方式: OAI收割

来源:金属研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。