中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Grignard reagent reduced nanocarbon material in oxidative dehydrogenation of n-butane

文献类型:期刊论文

作者Li, JQ; Yu, P; Xie, JX; Zhang, YJ; Liu, HY; Su, DS; Rong, JF; Rong, JF (reprint author), Sinopec, Res Inst Petr Proc, Beijing 100083, Peoples R China.; Liu, HY (reprint author), Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Liaoning, Peoples R China.
刊名JOURNAL OF CATALYSIS
出版日期2018-04-01
卷号360页码:51-56
关键词Carbon Nanotubes Catalytic-properties Surface-chemistry Vmgo Catalysts Oxide Nanocomposites Graphite Propane Facile
ISSN号0021-9517
英文摘要A modification route of nanocarbon catalyst based on Grignard reagent reduction of oxidized carbon nanotubes (o-CNTs) has been developed for oxidative dehydrogenation (ODH) of n-butane. The o-CNTs contain considerable amount of electrophilic oxygen species which are responsible for deep oxidation side-reactions and the alkene selectivity in ODH is low. After Grignard reduction, the corresponding electrophilic oxygen groups on the surface of the catalyst were eliminated and the basicity increased. As a result, the side-reactions in ODH were prohibited and the alkene selectivity was significantly improved compared with o-CNTs. The chlorine containing Mg/Cl species were found to have positive effect on the improvement of C4H8 alkene yield. This study provides a method of the preparation of nanocarbon catalyst to achieve higher alkene selectivity for the dehydrogenation reaction. (C) 2018 Elsevier Inc. All rights reserved.; A modification route of nanocarbon catalyst based on Grignard reagent reduction of oxidized carbon nanotubes (o-CNTs) has been developed for oxidative dehydrogenation (ODH) of n-butane. The o-CNTs contain considerable amount of electrophilic oxygen species which are responsible for deep oxidation side-reactions and the alkene selectivity in ODH is low. After Grignard reduction, the corresponding electrophilic oxygen groups on the surface of the catalyst were eliminated and the basicity increased. As a result, the side-reactions in ODH were prohibited and the alkene selectivity was significantly improved compared with o-CNTs. The chlorine containing Mg/Cl species were found to have positive effect on the improvement of C4H8 alkene yield. This study provides a method of the preparation of nanocarbon catalyst to achieve higher alkene selectivity for the dehydrogenation reaction. (C) 2018 Elsevier Inc. All rights reserved.
学科主题Chemistry, Physical ; Engineering, Chemical
语种英语
资助机构China Petrochemical Cooperation [S213043]; Ministry of Science and Technology (MOST) [2016YFA0204100]; National Natural Science Foundation of China [21573254, 91545110]; Youth Innovation Promotion Association, Chinese Academy of Sciences (CAS)
公开日期2018-06-05
源URL[http://ir.imr.ac.cn/handle/321006/79395]  
专题金属研究所_中国科学院金属研究所
通讯作者Rong, JF (reprint author), Sinopec, Res Inst Petr Proc, Beijing 100083, Peoples R China.; Liu, HY (reprint author), Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Liaoning, Peoples R China.
推荐引用方式
GB/T 7714
Li, JQ,Yu, P,Xie, JX,et al. Grignard reagent reduced nanocarbon material in oxidative dehydrogenation of n-butane[J]. JOURNAL OF CATALYSIS,2018,360:51-56.
APA Li, JQ.,Yu, P.,Xie, JX.,Zhang, YJ.,Liu, HY.,...&Liu, HY .(2018).Grignard reagent reduced nanocarbon material in oxidative dehydrogenation of n-butane.JOURNAL OF CATALYSIS,360,51-56.
MLA Li, JQ,et al."Grignard reagent reduced nanocarbon material in oxidative dehydrogenation of n-butane".JOURNAL OF CATALYSIS 360(2018):51-56.

入库方式: OAI收割

来源:金属研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。