中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Trends in activity for the oxygen evolution reaction on transition metal (M = Fe, Co, Ni) phosphide precatalysts

文献类型:期刊论文

作者Xu, JY; Li, JJ; Xiong, DH; Zhang, BS; Liu, YF; Wu, KH; Amorim, I; Li, W; Liu, LF; Liu, LF (reprint author), Int Iberian Nanotechnol Lab, Ave Mestre Jose Veiga, P-4715330 Braga, Portugal.
刊名CHEMICAL SCIENCE
出版日期2018-04-14
卷号9期号:14页码:3470-3476
关键词Electrochemical Water Oxidation Bifunctional Catalysts Highly Efficient Double Hydroxide Nickel Foam Electrocatalysts Nanoparticles Nanosheets Graphene Insights
ISSN号2041-6520
英文摘要Transition metal phosphides (TMPs) have recently emerged as a new class of pre-catalysts that can efficiently catalyze the oxygen evolution reaction (OER). However, how the OER activity of TMPs varies with the catalyst composition has not been systematically explored. Here, we report the alkaline OER electrolysis of a series of nanoparticulate phosphides containing different equimolar metal (M = Fe, Co, Ni) components. Notable trends in OER activity are observed, following the order of FeP < NiP < CoP < FeNiP < FeCoP < CoNiP < FeCoNiP, which indicate that the introduction of a secondary metal(s) to a mono-metallic TMP substantially boosts the OER performance. We ascribe the promotional effect to the enhanced oxidizing power of bi-and tri-metallic TMPs that can facilitate the formation of MOH and chemical adsorption of OH- groups, which are the rate-limiting steps for these catalysts according to our Tafel analysis. Remarkably, the tri-metallic FeCoNiP pre-catalyst exhibits exceptionally high apparent and intrinsic OER activities, requiring only 200 mV to deliver 10 mA cm(-2) and showing a high turnover frequency (TOF) of >= 0.94 s(-1) at the overpotential of 350 mV.; Transition metal phosphides (TMPs) have recently emerged as a new class of pre-catalysts that can efficiently catalyze the oxygen evolution reaction (OER). However, how the OER activity of TMPs varies with the catalyst composition has not been systematically explored. Here, we report the alkaline OER electrolysis of a series of nanoparticulate phosphides containing different equimolar metal (M = Fe, Co, Ni) components. Notable trends in OER activity are observed, following the order of FeP < NiP < CoP < FeNiP < FeCoP < CoNiP < FeCoNiP, which indicate that the introduction of a secondary metal(s) to a mono-metallic TMP substantially boosts the OER performance. We ascribe the promotional effect to the enhanced oxidizing power of bi-and tri-metallic TMPs that can facilitate the formation of MOH and chemical adsorption of OH- groups, which are the rate-limiting steps for these catalysts according to our Tafel analysis. Remarkably, the tri-metallic FeCoNiP pre-catalyst exhibits exceptionally high apparent and intrinsic OER activities, requiring only 200 mV to deliver 10 mA cm(-2) and showing a high turnover frequency (TOF) of >= 0.94 s(-1) at the overpotential of 350 mV.
学科主题Chemistry, Multidisciplinary
语种英语
资助机构European Horizon project "CritCat" [686053]; Portuguese Foundation of Science and Technology (FCT) [IF/01595/2014, PTDC/CTM-ENE/2349/2014, 016660]
公开日期2018-06-05
源URL[http://ir.imr.ac.cn/handle/321006/79364]  
专题金属研究所_中国科学院金属研究所
通讯作者Liu, LF (reprint author), Int Iberian Nanotechnol Lab, Ave Mestre Jose Veiga, P-4715330 Braga, Portugal.
推荐引用方式
GB/T 7714
Xu, JY,Li, JJ,Xiong, DH,et al. Trends in activity for the oxygen evolution reaction on transition metal (M = Fe, Co, Ni) phosphide precatalysts[J]. CHEMICAL SCIENCE,2018,9(14):3470-3476.
APA Xu, JY.,Li, JJ.,Xiong, DH.,Zhang, BS.,Liu, YF.,...&Liu, LF .(2018).Trends in activity for the oxygen evolution reaction on transition metal (M = Fe, Co, Ni) phosphide precatalysts.CHEMICAL SCIENCE,9(14),3470-3476.
MLA Xu, JY,et al."Trends in activity for the oxygen evolution reaction on transition metal (M = Fe, Co, Ni) phosphide precatalysts".CHEMICAL SCIENCE 9.14(2018):3470-3476.

入库方式: OAI收割

来源:金属研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。