中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Ultrahigh-performance transparent conductive films of carbon-welded isolated single-wall carbon nanotubes

文献类型:期刊论文

作者Jiang, S; Hou, PX; Chen, ML; Wang, BW; Sun, DM; Tang, DM; Jin, Q; Guo, QX; Zhang, DD; Du, JH
刊名SCIENCE ADVANCES
出版日期2018-05-01
卷号4期号:5页码:-
关键词Light-emitting-diodes Optoelectronic Devices Thin-films Electrodes Networks Phase
ISSN号2375-2548
英文摘要Single-wall carbon nanotubes (SWCNTs) are ideal for fabricating transparent conductive films because of their small diameter, good optical and electrical properties, and excellent flexibility. However, a high intertube Schottky junction resistance, together with the existence of aggregated bundles of SWCNTs, leads to a degraded optoelectronic performance of the films. We report a network of isolated SWCNTs prepared by an injection floating catalyst chemical vapor deposition method, in which crossed SWCNTs are welded together by graphitic carbon. Pristine SWCNT films show a record low sheet resistance of 41 ohm rectangle(-1) at 90% transmittance for 550-nm light. After HNO3 treatment, the sheet resistance further decreases to 25 ohm rectangle(-1). Organic light-emitting diodes using this SWCNT film as anodes demonstrate a low turn-on voltage of 2.5 V, a high current efficiency of 75 cd A(-1), and excellent flexibility. Investigation of isolated SWCNT-based field-effect transistors shows that the carbon-welded joints convert the Schottky contacts between metallic and semiconducting SWCNTs into near-ohmic ones, which significantly improves the conductivity of the transparent SWCNT network. Our work provides a new avenue of assembling individual SWCNTs into macroscopic thin films, which demonstrate great potential for use as transparent electrodes in various flexible electronics.; Single-wall carbon nanotubes (SWCNTs) are ideal for fabricating transparent conductive films because of their small diameter, good optical and electrical properties, and excellent flexibility. However, a high intertube Schottky junction resistance, together with the existence of aggregated bundles of SWCNTs, leads to a degraded optoelectronic performance of the films. We report a network of isolated SWCNTs prepared by an injection floating catalyst chemical vapor deposition method, in which crossed SWCNTs are welded together by graphitic carbon. Pristine SWCNT films show a record low sheet resistance of 41 ohm rectangle(-1) at 90% transmittance for 550-nm light. After HNO3 treatment, the sheet resistance further decreases to 25 ohm rectangle(-1). Organic light-emitting diodes using this SWCNT film as anodes demonstrate a low turn-on voltage of 2.5 V, a high current efficiency of 75 cd A(-1), and excellent flexibility. Investigation of isolated SWCNT-based field-effect transistors shows that the carbon-welded joints convert the Schottky contacts between metallic and semiconducting SWCNTs into near-ohmic ones, which significantly improves the conductivity of the transparent SWCNT network. Our work provides a new avenue of assembling individual SWCNTs into macroscopic thin films, which demonstrate great potential for use as transparent electrodes in various flexible electronics.
学科主题Multidisciplinary Sciences
语种英语
资助机构Ministry of Science and Technology of China [2016YFA0200101]; National Natural Science Foundation of China [51625203, 51532008, 51521091, 51772303, 51572264, 51390473, 51371178, 51372254]; Chinese Academy of Sciences [KGZD-EW-T06]; CAS/SAFEA (Chinese Academy of Sciences/State Administration of Foreign Experts Affairs) International Partnership Program for Creative Research Teams; Molecular and Thin Film Engineering for Building Integrated Photonics and Process Industry project of the Aalto University Aalto Energy Efficiency Research Programme; Liaoning BaiQianWan Talents Program
公开日期2018-06-05
源URL[http://ir.imr.ac.cn/handle/321006/79315]  
专题金属研究所_中国科学院金属研究所
通讯作者Liu, C; Cheng, HM (reprint author), Chinese Acad Sci, Shenyang Nat Lab Mat Sci, Inst Met Res, Shenyang 110016, Liaoning, Peoples R China.; Cheng, HM (reprint author), ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 200031, Peoples R China.; Cheng, HM (reprint author), Univ Sci & Technol China, Sch Mat Sci & Engn, Shenyang 110016, Liaoning, Peoples R China.; Cheng, HM (reprint author), Tsinghua Univ, Tsinghua Berkeley Shenzhen Inst, Shenzhen 518055, Peoples R China.
推荐引用方式
GB/T 7714
Jiang, S,Hou, PX,Chen, ML,et al. Ultrahigh-performance transparent conductive films of carbon-welded isolated single-wall carbon nanotubes[J]. SCIENCE ADVANCES,2018,4(5):-.
APA Jiang, S.,Hou, PX.,Chen, ML.,Wang, BW.,Sun, DM.,...&Cheng, HM .(2018).Ultrahigh-performance transparent conductive films of carbon-welded isolated single-wall carbon nanotubes.SCIENCE ADVANCES,4(5),-.
MLA Jiang, S,et al."Ultrahigh-performance transparent conductive films of carbon-welded isolated single-wall carbon nanotubes".SCIENCE ADVANCES 4.5(2018):-.

入库方式: OAI收割

来源:金属研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。