Maximizing the visible light photoelectrochemical activity of B/N-doped anatase TiO2 microspheres with exposed dominant {001} facets
文献类型:期刊论文
作者 | Hong, XX; Kang, YY; Zhen, C; Kong, XD; Yin, LC; Irvine, JTS; Wang, LZ; Liu, G; Cheng, HM; Liu, G (reprint author), Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Liaoning, Peoples R China. |
刊名 | SCIENCE CHINA-MATERIALS
![]() |
出版日期 | 2018-06-01 |
卷号 | 61期号:6页码:831-838 |
关键词 | Hydrogen-production Titanium-dioxide Energy-conversion Water Oxidation Photocatalyst Irradiation Efficiency |
ISSN号 | 2095-8226 |
英文摘要 | Anatase TiO2 microspheres with exposed dominant {001} facets were doped with interstitial boron to have a concentration gradient with the maximum concentration at the surface. They were then further doped with substitutional nitrogen by heating in an ammonia atmosphere at different temperatures from 440 to 560 degrees C to give surface N concentrations ranging from 7.03 to 15.47 at%. The optical absorption, atomic and electronic structures and visible-light photoelectrochemical water oxidation activity of these materials were investigated. The maximum activity of the doped TiO2 was achieved at a nitrogen doping temperature of 520 degrees C that gave a high absorbance over the whole visible light region but with no defect-related background absorption.; Anatase TiO2 microspheres with exposed dominant {001} facets were doped with interstitial boron to have a concentration gradient with the maximum concentration at the surface. They were then further doped with substitutional nitrogen by heating in an ammonia atmosphere at different temperatures from 440 to 560 degrees C to give surface N concentrations ranging from 7.03 to 15.47 at%. The optical absorption, atomic and electronic structures and visible-light photoelectrochemical water oxidation activity of these materials were investigated. The maximum activity of the doped TiO2 was achieved at a nitrogen doping temperature of 520 degrees C that gave a high absorbance over the whole visible light region but with no defect-related background absorption. |
学科主题 | Materials Science, Multidisciplinary |
语种 | 英语 |
资助机构 | Major Basic Research Program, Ministry of Science and Technology of China [2014CB239401]; National Natural Science Fundation of China [51422210, 21633009, 51629201, 51521091]; Key Research Program of Frontier Sciences CAS [QYZDB-SSW-JSC039]; Newton Advanced Fellowship |
公开日期 | 2018-06-05 |
源URL | [http://ir.imr.ac.cn/handle/321006/79292] ![]() |
专题 | 金属研究所_中国科学院金属研究所 |
通讯作者 | Liu, G (reprint author), Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Liaoning, Peoples R China.; Liu, G (reprint author), Univ Sci & Technol China, Sch Mat Sci & Engn, Shenyang 110016, Liaoning, Peoples R China. |
推荐引用方式 GB/T 7714 | Hong, XX,Kang, YY,Zhen, C,et al. Maximizing the visible light photoelectrochemical activity of B/N-doped anatase TiO2 microspheres with exposed dominant {001} facets[J]. SCIENCE CHINA-MATERIALS,2018,61(6):831-838. |
APA | Hong, XX.,Kang, YY.,Zhen, C.,Kong, XD.,Yin, LC.,...&Liu, G .(2018).Maximizing the visible light photoelectrochemical activity of B/N-doped anatase TiO2 microspheres with exposed dominant {001} facets.SCIENCE CHINA-MATERIALS,61(6),831-838. |
MLA | Hong, XX,et al."Maximizing the visible light photoelectrochemical activity of B/N-doped anatase TiO2 microspheres with exposed dominant {001} facets".SCIENCE CHINA-MATERIALS 61.6(2018):831-838. |
入库方式: OAI收割
来源:金属研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。