Interfacial microstructure evolution of glass-based coating on IC10 superalloy with a Ni3Al bond-coat at 1050 degrees C
文献类型:期刊论文
作者 | Wang, Xin; Zhu, Shenglong; Li, Zhengxian; Zhang, Yusheng; Chen, Minghui; Wang, Fuhui; Wang, X (reprint author), Northwest Inst Nonferrous Met Res, Xian, Shaanxi, Peoples R China. |
刊名 | WILEY
![]() |
出版日期 | 2017-08-01 |
卷号 | 100期号:8页码:3451-3466 |
关键词 | Coatings Glass Interfaces Oxidation Transmission Electron Microscopy |
ISSN号 | 0002-7820 |
英文摘要 | A glass-based composite coating incorporating YSZ, corundum, and Ni3Al was prepared on IC10 superalloy with a sputtering Hf-modified Ni3Al bond-coat. Sealing effect of the glass-based top-coat and reactive elemental effect of Hf facilitated the formation of columnar alpha-Al2O3 at 1050 degrees C. Furthermore, a discontinuous gahnite interlayer formed at the alpha-Al2O3/top-coat interface due to interfacial reactions. However, because of the discontinuous microstructure of gahnite, the alpha-Al2O3 suffered durative attack by the active glass matrix, which caused severe internal oxidation of Hf and Al within the bond-coat. In addition, the oxygen barrier ability of the top-coat changed with its microstructure evolution.; A glass-based composite coating incorporating YSZ, corundum, and Ni3Al was prepared on IC10 superalloy with a sputtering Hf-modified Ni3Al bond-coat. Sealing effect of the glass-based top-coat and reactive elemental effect of Hf facilitated the formation of columnar alpha-Al2O3 at 1050 degrees C. Furthermore, a discontinuous gahnite interlayer formed at the alpha-Al2O3/top-coat interface due to interfacial reactions. However, because of the discontinuous microstructure of gahnite, the alpha-Al2O3 suffered durative attack by the active glass matrix, which caused severe internal oxidation of Hf and Al within the bond-coat. In addition, the oxygen barrier ability of the top-coat changed with its microstructure evolution. |
学科主题 | Materials Science, Ceramics |
语种 | 英语 |
资助机构 | National Natural Science Foundation of China [51501155, 51603169]; Natural Science Foundation of Shaanxi Province, China [2016JM5045]; National High Technology Research and Development Program of China [2012AA03A512] |
公开日期 | 2018-01-10 |
源URL | [http://ir.imr.ac.cn/handle/321006/79164] ![]() |
专题 | 金属研究所_中国科学院金属研究所 |
通讯作者 | Wang, X (reprint author), Northwest Inst Nonferrous Met Res, Xian, Shaanxi, Peoples R China. |
推荐引用方式 GB/T 7714 | Wang, Xin,Zhu, Shenglong,Li, Zhengxian,et al. Interfacial microstructure evolution of glass-based coating on IC10 superalloy with a Ni3Al bond-coat at 1050 degrees C[J]. WILEY,2017,100(8):3451-3466. |
APA | Wang, Xin.,Zhu, Shenglong.,Li, Zhengxian.,Zhang, Yusheng.,Chen, Minghui.,...&Wang, X .(2017).Interfacial microstructure evolution of glass-based coating on IC10 superalloy with a Ni3Al bond-coat at 1050 degrees C.WILEY,100(8),3451-3466. |
MLA | Wang, Xin,et al."Interfacial microstructure evolution of glass-based coating on IC10 superalloy with a Ni3Al bond-coat at 1050 degrees C".WILEY 100.8(2017):3451-3466. |
入库方式: OAI收割
来源:金属研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。