中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
The effect of defects on the catalytic activity of single Au atom supported carbon nanotubes and reaction mechanism for CO oxidation

文献类型:期刊论文

作者Ali, Sajjad; Liu, Tian Fu; Lian, Zan; Li, Bo; Su, Dang Sheng; Li, B; Su, DS (reprint author), Chinese Acad Sci, Shenyang Natl Lab Mat Sci, Inst Met Res, 72 Wenhua Rd, Shenyang 110016, Liaoning, Peoples R China.
刊名ROYAL SOC CHEMISTRY
出版日期2017-09-07
卷号19期号:33页码:22344-22354
ISSN号1463-9076
英文摘要The mechanism of CO oxidation by O-2 on a single Au atom supported on pristine, mono atom vacancy (m), di atom vacancy (di) and the Stone Wales defect (SW) on single walled carbon nanotube (SWCNT) surface is systematically investigated theoretically using density functional theory. We determine that single Au atoms can be trapped effectively by the defects on SWCNTs. The defects on SWCNTs can enhance both the binding strength and catalytic activity of the supported single Au atom. Fundamental aspects such as adsorption energy and charge transfer are elucidated to analyze the adsorption properties of CO and O-2 and co-adsorption of CO and O-2 molecules. It is found that CO binds stronger than O-2 on Au supported SWCNT. We clearly demonstrate that the defected SWCNT surface promotes electron transfer from the supported single Au atom to O-2 molecules. On the other hand, this effect is weaker for pristine SWCNTs. It is observed that the high density of spin-polarized states are localized in the region of the Fermi level due to the strong interactions between Au (5d orbital) and the adjacent carbon (2p orbital) atoms, which influence the catalytic performance. In addition, we elucidate both the Langmuir-Hinshelwood (LH) and Eley-Rideal (ER) mechanisms of CO oxidation by O-2. For the LH pathway, the barriers of the rate-limiting step are calculated to be 0.02 eV and 0.05 eV for Au/m-SWCNT and Au/di-SWCNT, respectively. To regenerate the active sites, an ER-like reaction occurs to form a second CO2 molecule. The ER pathway is observed on Au/m-SWCNT, Au/SW-SWCNT and Au/SWCNT in which the Au/m-SWCNT has a smaller barrier. The comparison with a previous study (Lu et al., J. Phys. Chem. C, 2009, 113, 20156-20160.) indicates that the curvature effect of SWCNTs is important for the catalytic property of the supported single Au. Overall, Au/m-SWCNT is identified as the most active catalyst for CO oxidation compared to pristine SWCNT, SW-SWCNT and di-SWCNT. Our findings give a clear description on the relationship between the defects in the support and the catalytic properties of Au and open a new avenue to develop carbon nanomaterial-based single atom catalysts for application in environmental and energy related fields.; The mechanism of CO oxidation by O-2 on a single Au atom supported on pristine, mono atom vacancy (m), di atom vacancy (di) and the Stone Wales defect (SW) on single walled carbon nanotube (SWCNT) surface is systematically investigated theoretically using density functional theory. We determine that single Au atoms can be trapped effectively by the defects on SWCNTs. The defects on SWCNTs can enhance both the binding strength and catalytic activity of the supported single Au atom. Fundamental aspects such as adsorption energy and charge transfer are elucidated to analyze the adsorption properties of CO and O-2 and co-adsorption of CO and O-2 molecules. It is found that CO binds stronger than O-2 on Au supported SWCNT. We clearly demonstrate that the defected SWCNT surface promotes electron transfer from the supported single Au atom to O-2 molecules. On the other hand, this effect is weaker for pristine SWCNTs. It is observed that the high density of spin-polarized states are localized in the region of the Fermi level due to the strong interactions between Au (5d orbital) and the adjacent carbon (2p orbital) atoms, which influence the catalytic performance. In addition, we elucidate both the Langmuir-Hinshelwood (LH) and Eley-Rideal (ER) mechanisms of CO oxidation by O-2. For the LH pathway, the barriers of the rate-limiting step are calculated to be 0.02 eV and 0.05 eV for Au/m-SWCNT and Au/di-SWCNT, respectively. To regenerate the active sites, an ER-like reaction occurs to form a second CO2 molecule. The ER pathway is observed on Au/m-SWCNT, Au/SW-SWCNT and Au/SWCNT in which the Au/m-SWCNT has a smaller barrier. The comparison with a previous study (Lu et al., J. Phys. Chem. C, 2009, 113, 20156-20160.) indicates that the curvature effect of SWCNTs is important for the catalytic property of the supported single Au. Overall, Au/m-SWCNT is identified as the most active catalyst for CO oxidation compared to pristine SWCNT, SW-SWCNT and di-SWCNT. Our findings give a clear description on the relationship between the defects in the support and the catalytic properties of Au and open a new avenue to develop carbon nanomaterial-based single atom catalysts for application in environmental and energy related fields.
学科主题Chemistry, Physical ; Physics, Atomic, Molecular & Chemical
语种英语
资助机构NSFC [21573255, 21133010, 51221264, 21261160487]; Chinese Academy of Sciences [XDA09030103]; Institute of Metal Research [Y3NBA211A1]; NSFC Guangdong Joint Fund
公开日期2018-01-10
源URL[http://ir.imr.ac.cn/handle/321006/79104]  
专题金属研究所_中国科学院金属研究所
通讯作者Li, B; Su, DS (reprint author), Chinese Acad Sci, Shenyang Natl Lab Mat Sci, Inst Met Res, 72 Wenhua Rd, Shenyang 110016, Liaoning, Peoples R China.
推荐引用方式
GB/T 7714
Ali, Sajjad,Liu, Tian Fu,Lian, Zan,et al. The effect of defects on the catalytic activity of single Au atom supported carbon nanotubes and reaction mechanism for CO oxidation[J]. ROYAL SOC CHEMISTRY,2017,19(33):22344-22354.
APA Ali, Sajjad.,Liu, Tian Fu.,Lian, Zan.,Li, Bo.,Su, Dang Sheng.,...&Su, DS .(2017).The effect of defects on the catalytic activity of single Au atom supported carbon nanotubes and reaction mechanism for CO oxidation.ROYAL SOC CHEMISTRY,19(33),22344-22354.
MLA Ali, Sajjad,et al."The effect of defects on the catalytic activity of single Au atom supported carbon nanotubes and reaction mechanism for CO oxidation".ROYAL SOC CHEMISTRY 19.33(2017):22344-22354.

入库方式: OAI收割

来源:金属研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。