中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Regulating p-block metals in perovskite nanodots for efficient electrocatalytic water oxidation

文献类型:期刊论文

作者Li, Bo-Quan; Xia, Zi-Jing; Zhang, Bingsen; Tang, Cheng; Wang, Hao-Fan; Zhang, Qiang; Zhang, Q (reprint author), Tsinghua Univ, Beijing Key Lab Green Chem React Engn & Technol, Dept Chem Engn, Beijing 100084, Peoples R China.
刊名NATURE PUBLISHING GROUP
出版日期2017-10-16
卷号8页码:-
ISSN号2041-1723
英文摘要Water oxidation represents the core process of many sustainable energy systems, such as fuel cells, rechargeable metal-air batteries, and water splitting. Material surface defects with high-energy hanging bonds possess superb intrinsic reactivity, whose actual performance is limited by the dimension and conductivity of the electrocatalyst. Herein we propose a surface defect-rich perovskite electrocatalyst through a p-block metal regulation concept to achieve high performance for oxygen evolution. As a typical p-metal, Sn4+ dissolves from the solid phase from model SnNiFe perovskite nanodots, resulting in abundant surface defects with superior water oxidation performance. An oxygen pool model and a fusion-evolution mechanism are therefore proposed for the in-depth understanding of p-block metal regulation and the oxygen evolution reaction. The energy chemistry unveiled herein provides insights into water oxidation and helps to tackle critical issues in multi-electron oxygen electrocatalysis.; Water oxidation represents the core process of many sustainable energy systems, such as fuel cells, rechargeable metal-air batteries, and water splitting. Material surface defects with high-energy hanging bonds possess superb intrinsic reactivity, whose actual performance is limited by the dimension and conductivity of the electrocatalyst. Herein we propose a surface defect-rich perovskite electrocatalyst through a p-block metal regulation concept to achieve high performance for oxygen evolution. As a typical p-metal, Sn4+ dissolves from the solid phase from model SnNiFe perovskite nanodots, resulting in abundant surface defects with superior water oxidation performance. An oxygen pool model and a fusion-evolution mechanism are therefore proposed for the in-depth understanding of p-block metal regulation and the oxygen evolution reaction. The energy chemistry unveiled herein provides insights into water oxidation and helps to tackle critical issues in multi-electron oxygen electrocatalysis.
学科主题Multidisciplinary Sciences
语种英语
资助机构National Key Research and Development Program [2016YFA0202500, 2016YFA0200102]; Natural Scientific Foundation of China [21422604]; Tsinghua University Initiative Scientific Research Program
公开日期2018-01-10
源URL[http://ir.imr.ac.cn/handle/321006/79041]  
专题金属研究所_中国科学院金属研究所
通讯作者Zhang, Q (reprint author), Tsinghua Univ, Beijing Key Lab Green Chem React Engn & Technol, Dept Chem Engn, Beijing 100084, Peoples R China.
推荐引用方式
GB/T 7714
Li, Bo-Quan,Xia, Zi-Jing,Zhang, Bingsen,et al. Regulating p-block metals in perovskite nanodots for efficient electrocatalytic water oxidation[J]. NATURE PUBLISHING GROUP,2017,8:-.
APA Li, Bo-Quan.,Xia, Zi-Jing.,Zhang, Bingsen.,Tang, Cheng.,Wang, Hao-Fan.,...&Zhang, Q .(2017).Regulating p-block metals in perovskite nanodots for efficient electrocatalytic water oxidation.NATURE PUBLISHING GROUP,8,-.
MLA Li, Bo-Quan,et al."Regulating p-block metals in perovskite nanodots for efficient electrocatalytic water oxidation".NATURE PUBLISHING GROUP 8(2017):-.

入库方式: OAI收割

来源:金属研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。