Three-dimensional elastoplastic phase-field simulation of gamma ' rafting and creep deformation
文献类型:期刊论文
作者 | Yang, Min; Zhang, Jun; Wei, Hua; Gui, Weimin; Jin, Tao; Liu, Lin; Zhang, J (reprint author), Northwestern Polytech Univ, State Key Lab Solidificat Proc, Xian 710072, Peoples R China.; Jin, T (reprint author), Chinese Acad Sci, Inst Met Res, Superalloys Div, Shenyang 110016, Peoples R China. |
刊名 | SPRINGER
![]() |
出版日期 | 2017-12-01 |
卷号 | 52期号:24页码:13940-13947 |
ISSN号 | 0022-2461 |
英文摘要 | A modified phase-field model coupling viscoplastic constitutive equations has been built up to simulate the creep process of nickel-base single-crystal superalloys at 1223 K/300 MPa. The kinematic and isotropic hardening effects as well as interactions of slip systems are included in the present model. Under the external tension along [001] direction, the plastic strain prefers to concentrate in the channel vertical to [001] direction, promoting gamma' precipitate to raft along the direction vertical to [001] direction. The interactions between slip systems alter the value of plastic strain and thus the stress field in inner gamma channel. In turn, the stress field readjusts the plastic deformation. The simulative results and experimental data are in good agreement in the initial creep stage. In addition, this modified model gives a possibility to simulate the microstructure evolution during cycle fatigue.; A modified phase-field model coupling viscoplastic constitutive equations has been built up to simulate the creep process of nickel-base single-crystal superalloys at 1223 K/300 MPa. The kinematic and isotropic hardening effects as well as interactions of slip systems are included in the present model. Under the external tension along [001] direction, the plastic strain prefers to concentrate in the channel vertical to [001] direction, promoting gamma' precipitate to raft along the direction vertical to [001] direction. The interactions between slip systems alter the value of plastic strain and thus the stress field in inner gamma channel. In turn, the stress field readjusts the plastic deformation. The simulative results and experimental data are in good agreement in the initial creep stage. In addition, this modified model gives a possibility to simulate the microstructure evolution during cycle fatigue. |
学科主题 | Materials Science, Multidisciplinary |
语种 | 英语 |
资助机构 | National Natural Science Foundation of China [51331005, 51071164, 51371173]; National Key Research and Development Program [2016YFB0701405]; State Key Laboratory of Solidification Processing in NWPU [SKLSP201318] |
公开日期 | 2018-01-10 |
源URL | [http://ir.imr.ac.cn/handle/321006/78967] ![]() |
专题 | 金属研究所_中国科学院金属研究所 |
通讯作者 | Zhang, J (reprint author), Northwestern Polytech Univ, State Key Lab Solidificat Proc, Xian 710072, Peoples R China.; Jin, T (reprint author), Chinese Acad Sci, Inst Met Res, Superalloys Div, Shenyang 110016, Peoples R China. |
推荐引用方式 GB/T 7714 | Yang, Min,Zhang, Jun,Wei, Hua,et al. Three-dimensional elastoplastic phase-field simulation of gamma ' rafting and creep deformation[J]. SPRINGER,2017,52(24):13940-13947. |
APA | Yang, Min.,Zhang, Jun.,Wei, Hua.,Gui, Weimin.,Jin, Tao.,...&Jin, T .(2017).Three-dimensional elastoplastic phase-field simulation of gamma ' rafting and creep deformation.SPRINGER,52(24),13940-13947. |
MLA | Yang, Min,et al."Three-dimensional elastoplastic phase-field simulation of gamma ' rafting and creep deformation".SPRINGER 52.24(2017):13940-13947. |
入库方式: OAI收割
来源:金属研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。