Action Units recognition based on Deep Spatial-Convolutional and Multi-label Residual network
文献类型:期刊论文
作者 | Wang, Su-Jing1![]() ![]() |
刊名 | NEUROCOMPUTING
![]() |
出版日期 | 2019-09-24 |
卷号 | 359页码:130-138 |
关键词 | Sample imbalance problem AU recognition Multi-label learning Local convolution Residual unit |
ISSN号 | 0925-2312 |
DOI | 10.1016/j.neucom.2019.05.018 |
文献子类 | article |
英文摘要 | Facial Action Unit (AU) recognition is an essential step in the facial analysis. A facial image has one or more AU(s). Given an AU, the number of images without the AU is far greater than that of images with the AU. So, AU recognition is not only a sample imbalance problem but also a multi-label learning problem. For the two problems, we proposed a novel Multi-label Slope Rate (MSR) loss function and an Advanced-MSR (Ad-MSR) loss function in deep network architecture to recognize AU. For other characters of AU recognition, a local convolution and residual units are used in the architecture. The experimental results on two expression databases labeled AU show that the proposed loss functions not only address overfitting of the network on the training set and enhancing the generalization ability on the test set. The proposed architecture also gets well performance in the databases. (C) 2019 Elsevier B.V. All rights reserved. |
WOS关键词 | FACIAL EXPRESSIONS ; MACHINE |
资助项目 | National Natural Science Foundation of China[61772511] ; National Engineering Laboratory for Public Security Risk Perception and Control by Big Data[18112403] |
WOS研究方向 | Computer Science |
语种 | 英语 |
WOS记录号 | WOS:000478960700012 |
出版者 | ELSEVIER |
资助机构 | National Natural Science Foundation of China ; National Engineering Laboratory for Public Security Risk Perception and Control by Big Data |
源URL | [http://ir.psych.ac.cn/handle/311026/29576] ![]() |
专题 | 心理研究所_中国科学院行为科学重点实验室 |
通讯作者 | Wang, Su-Jing |
作者单位 | 1.Chinese Acad Sci, Inst Psychol, Key Lab Behav Sci, Beijing 100101, Peoples R China 2.Xi An Jiao Tong Univ, Coll Software, Xian 710000, Shaanxi, Peoples R China 3.Capital Med Univ, Adv Innovat Ctr Human Brain Protect, Beijing 100054, Peoples R China 4.China Acad Elect & Informat Technol, Beijing 100041, Peoples R China |
推荐引用方式 GB/T 7714 | Wang, Su-Jing,Lin, Bo,Wang, Yong,et al. Action Units recognition based on Deep Spatial-Convolutional and Multi-label Residual network[J]. NEUROCOMPUTING,2019,359:130-138. |
APA | Wang, Su-Jing,Lin, Bo,Wang, Yong,Yi, Tongqiang,Zou, Bochao,&Lyu, Xiang-wen.(2019).Action Units recognition based on Deep Spatial-Convolutional and Multi-label Residual network.NEUROCOMPUTING,359,130-138. |
MLA | Wang, Su-Jing,et al."Action Units recognition based on Deep Spatial-Convolutional and Multi-label Residual network".NEUROCOMPUTING 359(2019):130-138. |
入库方式: OAI收割
来源:心理研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。