中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Action Units recognition based on Deep Spatial-Convolutional and Multi-label Residual network

文献类型:期刊论文

作者Wang, Su-Jing1; Lin, Bo2; Wang, Yong2; Yi, Tongqiang2; Zou, Bochao3,4; Lyu, Xiang-wen4
刊名NEUROCOMPUTING
出版日期2019-09-24
卷号359页码:130-138
关键词Sample imbalance problem AU recognition Multi-label learning Local convolution Residual unit
ISSN号0925-2312
DOI10.1016/j.neucom.2019.05.018
文献子类article
英文摘要

Facial Action Unit (AU) recognition is an essential step in the facial analysis. A facial image has one or more AU(s). Given an AU, the number of images without the AU is far greater than that of images with the AU. So, AU recognition is not only a sample imbalance problem but also a multi-label learning problem. For the two problems, we proposed a novel Multi-label Slope Rate (MSR) loss function and an Advanced-MSR (Ad-MSR) loss function in deep network architecture to recognize AU. For other characters of AU recognition, a local convolution and residual units are used in the architecture. The experimental results on two expression databases labeled AU show that the proposed loss functions not only address overfitting of the network on the training set and enhancing the generalization ability on the test set. The proposed architecture also gets well performance in the databases. (C) 2019 Elsevier B.V. All rights reserved.

WOS关键词FACIAL EXPRESSIONS ; MACHINE
资助项目National Natural Science Foundation of China[61772511] ; National Engineering Laboratory for Public Security Risk Perception and Control by Big Data[18112403]
WOS研究方向Computer Science
语种英语
WOS记录号WOS:000478960700012
出版者ELSEVIER
资助机构National Natural Science Foundation of China ; National Engineering Laboratory for Public Security Risk Perception and Control by Big Data
源URL[http://ir.psych.ac.cn/handle/311026/29576]  
专题心理研究所_中国科学院行为科学重点实验室
通讯作者Wang, Su-Jing
作者单位1.Chinese Acad Sci, Inst Psychol, Key Lab Behav Sci, Beijing 100101, Peoples R China
2.Xi An Jiao Tong Univ, Coll Software, Xian 710000, Shaanxi, Peoples R China
3.Capital Med Univ, Adv Innovat Ctr Human Brain Protect, Beijing 100054, Peoples R China
4.China Acad Elect & Informat Technol, Beijing 100041, Peoples R China
推荐引用方式
GB/T 7714
Wang, Su-Jing,Lin, Bo,Wang, Yong,et al. Action Units recognition based on Deep Spatial-Convolutional and Multi-label Residual network[J]. NEUROCOMPUTING,2019,359:130-138.
APA Wang, Su-Jing,Lin, Bo,Wang, Yong,Yi, Tongqiang,Zou, Bochao,&Lyu, Xiang-wen.(2019).Action Units recognition based on Deep Spatial-Convolutional and Multi-label Residual network.NEUROCOMPUTING,359,130-138.
MLA Wang, Su-Jing,et al."Action Units recognition based on Deep Spatial-Convolutional and Multi-label Residual network".NEUROCOMPUTING 359(2019):130-138.

入库方式: OAI收割

来源:心理研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。