中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
a genetic clustering algorithm using a message-based similarity measure

文献类型:会议论文

作者Chang Dongxia ; Zhao Yao ; Zheng Changwen ; Zhang Xianda
出版日期2011
关键词Chromosomes Gallium alloys Genetic algorithms Mathematical operators Message passing Real variables
页码-
英文摘要In this paper, a genetic clustering algorithm is described that uses a new similarity measure based message passing between data points and the candidate centers described by the chromosome. In the new algorithm, a variable-length real-value chromosome representation and a set of problem-specific evolutionary operators are used. Therefore, the proposed GA with message-based similarity (GAMS) clustering algorithm is able to automatically evolve and find the optimal number of clusters as well as proper clusters of the data set. Effectiveness of GAMS clustering algorithm is demonstrated for both artificial and real-life data set. Experiment results demonstrated that the GAMS clustering algorithm has high performance, effectiveness and flexibility. © 2011 Elsevier Ltd. All rights reserved.
收录类别EI
会议录Expert Systems with Applications
语种英语
ISSN号9574174
WOS记录号WOS:000298027300063
源URL[http://124.16.136.157/handle/311060/14387]  
专题软件研究所_综合信息系统技术国家级重点实验室 _会议论文
推荐引用方式
GB/T 7714
Chang Dongxia,Zhao Yao,Zheng Changwen,et al. a genetic clustering algorithm using a message-based similarity measure[C]. 见:.

入库方式: OAI收割

来源:软件研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。