Two kinds of two-boson realizations of generally deformed algebras with three generators
文献类型:期刊论文
作者 | Ruan Dong; Li Yan-Song; Sun Hong-Zhou |
刊名 | COMMUNICATIONS IN THEORETICAL PHYSICS
![]() |
出版日期 | 2007-03-15 |
卷号 | 47页码:529-534 |
关键词 | deformed algebra boson realization unitarization equation |
ISSN号 | 0253-6102 |
英文摘要 | In this paper two kinds of two-boson realizations of generally deformed algebras with three generators are obtained by generalizing the Jordan-Schwinger realizations of SU(2) and SU(1,1). For each kind, a. unitary realization and a non-unitary realization, together with the properties of their acting spaces, are discussed. Similarity transformations that relate tile non-unitary realizations to tile unitary ones are given by solving unitarization equations. |
WOS关键词 | ANGULAR-MOMENTUM ALGEBRA ; NONLINEAR LIE-ALGEBRAS ; INDECOMPOSABLE REPRESENTATIONS ; BOSON REALIZATIONS ; SU(2) |
WOS研究方向 | Physics |
语种 | 英语 |
WOS记录号 | WOS:000245199500031 |
出版者 | INTERNATIONAL ACADEMIC PUBLISHERS LIMITED |
源URL | [http://119.78.100.186/handle/113462/28145] ![]() |
专题 | 中国科学院近代物理研究所 |
通讯作者 | Ruan Dong |
作者单位 | 1.Natl Lab Heavy Ion Accelerator, Ctr Theoret Nucl Phys, Lanzhou 730000, Peoples R China 2.Tsing Hua Univ, Dept Phys, Beijing 100084, Peoples R China 3.Tsing Hua Univ, Key Lab Quantum Informat & Measurements, Beijing 100084, Peoples R China 4.Acad Sinica, Inst Theoret Phys, Beijing 100080, Peoples R China |
推荐引用方式 GB/T 7714 | Ruan Dong,Li Yan-Song,Sun Hong-Zhou. Two kinds of two-boson realizations of generally deformed algebras with three generators[J]. COMMUNICATIONS IN THEORETICAL PHYSICS,2007,47:529-534. |
APA | Ruan Dong,Li Yan-Song,&Sun Hong-Zhou.(2007).Two kinds of two-boson realizations of generally deformed algebras with three generators.COMMUNICATIONS IN THEORETICAL PHYSICS,47,529-534. |
MLA | Ruan Dong,et al."Two kinds of two-boson realizations of generally deformed algebras with three generators".COMMUNICATIONS IN THEORETICAL PHYSICS 47(2007):529-534. |
入库方式: OAI收割
来源:近代物理研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。