中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Adaptive training and pruning for neural networks: algorithms and application

文献类型:期刊论文

作者Chen, S; Chang, SJ; Yuan, JH; Zhang, YX; Wong, KW
刊名ACTA PHYSICA SINICA
出版日期2001-04-01
卷号50页码:674-681
关键词neural networks pattern recognition extended Kalman filtering pruning
ISSN号1000-3290
英文摘要Finding an optimal network size is one of the major concerns when building a neural network. In using the local extended Kalman filter (EKF) algorithm, we propose an efficient approach that combines EKF training and pruning as a whole. In particular, the covariance matrix obtained along with the local EKF training can be utilized to indicate the importance of the network weights. As a result, the network size can be determined adaptively to keep pace with the changes in input characteristics. The effectiveness of this algorithm is demonstrated on generalized XOR logic function and handwritten digit recognition.
WOS研究方向Physics
语种英语
WOS记录号WOS:000167947700017
出版者CHINESE PHYSICAL SOC
源URL[http://119.78.100.186/handle/113462/37014]  
专题中国科学院近代物理研究所
通讯作者Chen, S
作者单位1.Nankai Univ, Inst Modern Phys, Lab Opt Informat Sci, Chinese Minist Educ, Tianjin 300071, Peoples R China
2.City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China
推荐引用方式
GB/T 7714
Chen, S,Chang, SJ,Yuan, JH,et al. Adaptive training and pruning for neural networks: algorithms and application[J]. ACTA PHYSICA SINICA,2001,50:674-681.
APA Chen, S,Chang, SJ,Yuan, JH,Zhang, YX,&Wong, KW.(2001).Adaptive training and pruning for neural networks: algorithms and application.ACTA PHYSICA SINICA,50,674-681.
MLA Chen, S,et al."Adaptive training and pruning for neural networks: algorithms and application".ACTA PHYSICA SINICA 50(2001):674-681.

入库方式: OAI收割

来源:近代物理研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。